【題目】設(shè)

(1) 求函數(shù)的單調(diào)區(qū)間;

(2) 證明:

3)若函數(shù)有兩個(gè)零點(diǎn),且,求實(shí)數(shù)的取值范圍;

【答案】(1)當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是;當(dāng)時(shí),函數(shù)的遞減區(qū)間是,單調(diào)遞增區(qū)間是;

(2)見(jiàn)解析

(3)

【解析】

(1)求出函數(shù)的導(dǎo)數(shù),分類(lèi)解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;

2)分析出函數(shù)單調(diào)遞減,在單調(diào)遞增,得到即可;

(3)由題意知有兩個(gè)根,構(gòu)造分析,得到,解出a的范圍即可.

1)首先,函數(shù)定義域?yàn)?/span>,因,則當(dāng)時(shí),,

函數(shù)上單調(diào)遞增;

當(dāng),且時(shí),,函數(shù)上單調(diào)遞減;時(shí),,函數(shù)上單調(diào)遞增,故當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是;當(dāng)時(shí),函數(shù)的遞減區(qū)間是,單調(diào)遞增區(qū)間是;

2)若,則,

當(dāng)時(shí),時(shí),

所以:函數(shù)單調(diào)遞減,在單調(diào)遞增,故:;

3)由題設(shè)有兩個(gè)零點(diǎn),顯然,故,記,

當(dāng)時(shí),單調(diào)增;當(dāng)時(shí),單調(diào)減.所以當(dāng),即時(shí),函數(shù)有兩個(gè)零點(diǎn),所求實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件

B. p:,,則,

C. “若,則”的否命題是“若,則

D. 為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,當(dāng)輸入的的值為4時(shí),輸出的的值為2,則空白判斷框中的條件可能為( ).

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線C:的焦點(diǎn)為F,拋物線上的點(diǎn)A軸的距離等于.

1)求拋物線C的方程;

2)已知經(jīng)過(guò)拋物線C的焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十一黃金小長(zhǎng)假期間,某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天180元時(shí),房間會(huì)全部住滿。當(dāng)每個(gè)房間每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑。賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用(人工費(fèi),消耗費(fèi)用等等)。受市場(chǎng)調(diào)控,每個(gè)房間每天的房?jī)r(jià)不得高于340元。設(shè)每個(gè)房間的房?jī)r(jià)每天增加x(x10的正整數(shù)倍)。

(1) 設(shè)一天訂住的房間數(shù)為y,直接寫(xiě)出yx的函數(shù)關(guān)系式及自變量x的取值范圍;

(2) 設(shè)賓館一天的利潤(rùn)為w元,求wx的函數(shù)關(guān)系式;

(3) 一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的左右焦點(diǎn)分別為,,左頂點(diǎn)為,點(diǎn)在橢圓上,且的面積為.

(1)求橢圓的方程;

(2)過(guò)原點(diǎn)且與軸不重合的直線交橢圓,兩點(diǎn),直線分別與軸交于點(diǎn),,.求證:以為直徑的圓恒過(guò)交點(diǎn),,并求出面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線是拋物線的準(zhǔn)線,直線,與拋物線沒(méi)有公共點(diǎn)動(dòng)點(diǎn)在拋物線,點(diǎn)到直線的距離之和的最小值等于2.

求拋物線的方程;

點(diǎn)在直線上運(yùn)動(dòng),過(guò)點(diǎn)做拋物線的兩條切線,切點(diǎn)分別為,在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,請(qǐng)求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)若,且直線是曲線的一條切線,求實(shí)數(shù)的值;

(2)若不等式對(duì)任意恒成立,求的取值范圍;

(3)若函數(shù)有兩個(gè)極值點(diǎn),,且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案