【題目】已知橢圓()的右焦點(diǎn)為,是橢圓上任意一點(diǎn),且點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積的最大值為8.
(1)求橢圓的方程;
(2)若是上頂點(diǎn),直線l交橢圓于,兩點(diǎn),的重心恰好為點(diǎn),求直線l的方程的一般式.
【答案】(1)(2)
【解析】
(1)已知,點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積的最大時(shí),為短軸頂點(diǎn),這樣由三角形面積可計(jì)算出,再求出可得標(biāo)準(zhǔn)方程;
(2)由是重心可求得的中點(diǎn)的坐標(biāo),設(shè)出的坐標(biāo)代入橢圓方程相減,由中點(diǎn)坐標(biāo)可求得直線的斜率,從而得直線方程。
解:(1)由已知得,當(dāng)點(diǎn)與短軸上的端點(diǎn)重合時(shí),點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積取最大值,則,,,
∴橢圓的方程為.
(2)設(shè)線段的中點(diǎn)為,由三角形重心的性質(zhì)知,
又,∴,即故得,,
即Q的坐標(biāo)為(3,-2).設(shè),,則,,
且,,
以上兩式相減得,
∴,
故直線的方程為,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算體積的祖暅原理:“冪勢(shì)既同,則積不容異!币馑际牵簝蓚(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.已知曲線,直線為曲線在點(diǎn)處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個(gè)幾何體:
① ② ③ ④
圖①是底面直徑和高均為的圓錐;
圖②是將底面直徑和高均為的圓柱挖掉一個(gè)與圓柱同底等高的倒置圓錐得到的幾何體;
圖③是底面邊長(zhǎng)和高均為的正四棱錐;
圖④是將上底面直徑為,下底面直徑為,高為的圓臺(tái)挖掉一個(gè)底面直徑為,高為的倒置圓錐得到的幾何體.
根據(jù)祖暅原理,以上四個(gè)幾何體中與的體積相等的是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的極值;
(2)設(shè)函數(shù).當(dāng)=時(shí),若區(qū)間[1,e]上存在x0,使得,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)《人民網(wǎng)》報(bào)道,“美國(guó)國(guó)家航空航天局( NASA)發(fā)文稱,相比20年前世界變得更綠色了.衛(wèi)星資料顯示中國(guó)和印度的行動(dòng)主導(dǎo)了地球變綠.”據(jù)統(tǒng)計(jì),中國(guó)新增綠化面積的42%來自于植樹造林,下表是中國(guó)十個(gè)地區(qū)在2017年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)
單位:公頃
造林方式 | ||||||
地區(qū) | 造林總面積 | 人工造林 | 飛播造林 | 新封山育林 | 退化林修復(fù) | 人工更新 |
內(nèi)蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 135107 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 22417 | 15376 | 133 |
重慶 | 226333 | 100600 | 62400 | 63333 | ||
陜西 | 297642 | 33602 | 63865 | 16067 | ||
甘肅 | 325580 | 260144 | 57438 | 7998 | ||
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | 159734 | 2629 | ||
寧夏 | 91531 | 58960 | 22938 | 8298 | 1335 | |
北京 | 19064 | 10012 | 4000 | 3999 | 1053 |
(I)請(qǐng)根據(jù)上述數(shù)據(jù)分別寫出在這十個(gè)地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);
(Ⅱ)在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),求該地區(qū)人工造林面積占造林總面積的比值超過的概率是多少?
(Ⅲ)在這十個(gè)地區(qū)中,從新封山育林面積超過五萬公頃的地區(qū)中,任選兩個(gè)地區(qū),記X為這兩個(gè)地區(qū)中退化林修復(fù)面積超過六萬公頃的地區(qū)的個(gè)數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無價(jià)之寶.改革開放以來,有的地方領(lǐng)導(dǎo)片面追求政績(jī),對(duì)森林資源野蠻開發(fā)受到嚴(yán)肅查處事件時(shí)有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進(jìn)甲、乙兩種樹苗,并對(duì)甲、乙兩種樹苗各抽測(cè)了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:
(1)據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;
(2)據(jù)莖葉圖,運(yùn)用統(tǒng)計(jì)學(xué)知識(shí)分析比較甲、乙兩種樹苗高度整齊情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,為橢圓上不與左右頂點(diǎn)重合的任意一點(diǎn),,分別為的內(nèi)心、重心,當(dāng)軸時(shí),橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計(jì) | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高一學(xué)生有360人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請(qǐng)列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,是的中點(diǎn),,,,,將(圖)沿直線折起,使(如圖).
(1)求證:;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,圓: 的圓心在橢圓上,點(diǎn)到橢圓的右焦點(diǎn)的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作互相垂直的兩條直線,且交橢圓于兩點(diǎn),直線交圓于, 兩點(diǎn),且為的中點(diǎn),求面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com