如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū),規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80m,經(jīng)測(cè)量,點(diǎn)A位于點(diǎn)O正北方向60m處,點(diǎn)C位于點(diǎn)O正東方向170m處(OC為河岸),tan∠BCO=
4
3

(1)求新橋BC的長(zhǎng);
(2)當(dāng)OM多長(zhǎng)時(shí),圓形保護(hù)區(qū)的面積最大?
考點(diǎn):圓的切線方程,直線與圓的位置關(guān)系
專題:直線與圓
分析:(1)在四邊形AOCB中,過(guò)B作BE⊥OC于E,過(guò)A作AF⊥BE于F,設(shè)出AF,然后通過(guò)解直角三角形列式求解BE,進(jìn)一步得到CE,然后由勾股定理得答案;
(2)設(shè)BC與⊙M切于Q,延長(zhǎng)QM、CO交于P,設(shè)OM=xm,把PC、PQ用含有x的代數(shù)式表示,再結(jié)合古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80m列式求得x的范圍,得到x取最小值時(shí)圓的半徑最大,即圓形保護(hù)區(qū)的面積最大.
解答: 解:(1)如圖,

過(guò)B作BE⊥OC于E,過(guò)A作AF⊥BE于F,
∵∠ABC=90°,∠BEC=90°,
∴∠ABF=∠BCE,
tan∠ABF=tan∠BCO=
4
3

設(shè)AF=4x(m),則BF=3x(m).
∵∠AOE=∠AFE=∠OEF=90°,
∴OE=AF=4x(m),EF=AO=60(m),
∴BE=(3x+60)m.
tan∠BCO=
4
3
,
∴CE=
3
4
BE=(
9
4
x+45)
(m).
OC=(4x+
9
4
x+45)
(m).
4x+
9
4
x+45=170
,
解得:x=20.
∴BE=120m,CE=90m,
則BC=150m;
(2)如圖,

設(shè)BC與⊙M切于Q,延長(zhǎng)QM、CO交于P,
∵∠POM=∠PQC=90°,
∴∠PMO=∠BCO.
設(shè)OM=xm,則OP=
4
3
x
m,PM=
5
3
x
m.
∴PC=(
4
3
x+170)
m,PQ=(
16
15
x+136)
m.
設(shè)⊙M半徑為R,
∴R=MQ=(
16
15
x+136-
5
3
x)
m=(136-
3
5
x)
m.
∵A、O到⊙M上任一點(diǎn)距離不少于80m,
則R-AM≥80,R-OM≥80,
∴136-
3
5
x
-(60-x)≥80,136-
3
5
x
-x≥80.
解得:10≤x≤35.
∴當(dāng)且僅當(dāng)x=10時(shí)R取到最大值.
∴OM=10m時(shí),保護(hù)區(qū)面積最大.
點(diǎn)評(píng):本題考查圓的切線,考查了直線與圓的位置關(guān)系,解答的關(guān)鍵在于對(duì)題意的理解,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
b
,
c
是非零向量,已知命題p:若
a
b
=0,
b
c
=0,則
a
c
=0;命題q:若
a
b
,
b
c
,則
a
c
,則下列命題中真命題是(  )
A、p∨q
B、p∧q
C、(¬p)∧(¬q)
D、p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的周期為2,當(dāng)x∈[-1,1]時(shí),f(x)=x2,那么函數(shù)y=f(x)的圖象與函數(shù)y=|log4x|的圖象的交點(diǎn)共有( 。
A、4個(gè)B、3個(gè)C、2個(gè)D、1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x+y-1≥0
x-y-1≤0
x-3y+3≥0
,則z=x+2y的最大值為( 。
A、8B、7C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,且a+b+c=8.
(Ⅰ)若a=2,b=
5
2
,求cosC的值;
(Ⅱ)若sinAcos2
B
2
+sinBcos2
A
2
=2sinC,且△ABC的面積S=
9
2
sinC,求a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB的延長(zhǎng)線與DC的延長(zhǎng)線交于點(diǎn)E,且CB=CE.
(Ⅰ)證明:∠D=∠E;
(Ⅱ)設(shè)AD不是⊙O的直徑,AD的中點(diǎn)為M,且MB=MC,證明:△ADE為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是首項(xiàng)為1,公差為2的等差數(shù)列,Sn表示{an}的前n項(xiàng)和.
(Ⅰ)求an及Sn;
(Ⅱ)設(shè){bn}是首項(xiàng)為2的等比數(shù)列,公比為q滿足q2-(a4+1)q+S4=0.求{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

海關(guān)對(duì)同時(shí)從A,B,C三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測(cè),從各地區(qū)進(jìn)口此商品的數(shù)量(單位:件)如表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測(cè).
地區(qū)ABC
數(shù)量50150100
(Ⅰ)求這6件樣品來(lái)自A,B,C各地區(qū)商品的數(shù)量;
(Ⅱ)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)行進(jìn)一步檢測(cè),求這2件商品來(lái)自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(ax2+
b
x
6的展開式中x3項(xiàng)的系數(shù)為20,則a2+b2的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案