如圖,已知AB為⊙O的直徑,C為⊙O上一點,CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點,弦PQ交CD于E,則PE•EQ的值是   
【答案】分析:延長DC交⊙C于M,延長CD交⊙O于N.在⊙O中,由垂徑定理、相交弦定理易得CD=6.在⊙O、⊙C中,由相交弦定理可知PE•EQ=DE•EM=CE•EN,設CE=x,列方程求解得CE=3.所以DE=6-3=3,EM=6+3=9,即可求得PE•EQ.
解答:解:延長DC交⊙C于M,延長CD交⊙O于N.
∵CD2=AD•DB,AD=9,BD=4,
∴CD=6.
在⊙O、⊙C中,由相交弦定理可知,PE•EQ=DE•EM=CE•EN,
設CE=x,則DE=6-x,
則(6-x)(x+6)=x(6-x+6),
解得x=3.
所以,CE=3,DE=6-3=3,EM=6+3=9.
所以PE•EQ=3×9=27.
故填:27.
點評:本題主要考查了與圓有關的比例線段,此題綜合運用了相交弦定理、垂徑定理,發(fā)球基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

11、如圖,已知AB為⊙O的直徑,C為⊙O上一點,CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點,弦PQ交CD于E,則PE•EQ的值是
27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)(幾何證明)如圖,已知AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線AD交⊙O于D,過點D作DE⊥AC交AC的延長線于點E,OE交AD于點F.若
AC
AB
=
3
5
,則
AF
FD
的值為
8
5
8
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•太原模擬)如圖,已知AB為半圓O的直徑,BE、CD分別為半圓的切線,切點分別為B、C,DC的延長線交BE于F,AC的延長線交BE于E.AD⊥DC,D為垂足.
(1)求證:A、D、F、B四點共圓;
(2)求證:EF=FB.

查看答案和解析>>

科目:高中數(shù)學 來源:選修設計數(shù)學A4-1人教版 人教版 題型:047

如圖,已知AB為⊙O的弦,CD切⊙O于P,AC⊥CD于C,BD⊥DC于D,PQ⊥AB于Q.

求證:PQ2=AC·BD.

查看答案和解析>>

同步練習冊答案