敘述并證明兩個平面垂直的判定定理。

 

【答案】

見解析.

【解析】本試題主要考查了兩個平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,

那么這兩個平面互相垂直。并且通過作輔助線,利用定義法證明二面角的平面角的大小為90度即可。首先作出二面角,然后利用三角形求解,從而得到證明。

解:兩個平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,

那么這兩個平面互相垂直!.4分,

證明:設,……….6分,

則由知AB、CD共面,

,垂足為點B,……….8分,

在平面內(nèi)過點B作直線

是二面角的平面角,……….10分,

,即二面角是直二面角,………….12分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

請先用文字敘述兩個平面平行的性質(zhì)定理,然后寫出已知、求證、畫出圖象并寫出證明過程.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省師大附中2011-2012學年高二上學期期中考試數(shù)學理科試題 題型:044

敘述并證明直線與平面垂直的判定定理.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆度陜西省第一學期高二期中數(shù)學試卷 題型:解答題

敘述并證明直線與平面垂直的判定定理.

 

查看答案和解析>>

科目:高中數(shù)學 來源:0127 期中題 題型:解答題

敘述并證明直線與平面垂直的判定定理。

查看答案和解析>>

同步練習冊答案