某考察團對全國10大城市進行職工人均工資水平x(千元)與居民人均消費水平y(tǒng)(千元)統(tǒng)計調(diào)查發(fā)現(xiàn),y與x具有相關關系,回歸方程為
y
=0.66x+1.562.若某城市居民人均消費水平為7.675(千元),估計該城市人均消費額占人均工資收入的百分比約為(  )
A、83%B、72%
C、67%D、66%
考點:線性回歸方程
專題:閱讀型
分析:把y=7.675代入回歸直線方程求得x,再求
y
x
的值.
解答: 解:當居民人均消費水平為7.675時,
則7.675=0.66x+1.562,即職工人均工資水平x≈9.262,
∴人均消費額占人均工資收入的百分比為
7.675
9.262
×100%≈83%.
故選:A.
點評:本題考查了回歸直線方程的應用,熟練掌握回歸直線方程變量的含義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

化簡式子cos15°cos45°+sin15°sin45°的值是( 。
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,程序執(zhí)行后的結(jié)果是( 。
A、3,5B、5,3
C、5,5D、3,3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法:
(1)命題“?x∈R,使得2x>3”的否定是“?x∈R,使得2x≤3”
(2)命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是真命題
(3)f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),x>0時的解析式是f(x)=2x,則x<0的解析式為f(x)=-2-x
其中正確的說法的個數(shù)是(  )
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ex+x2-2的零點的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=
2x+b(x≤0)
ex(x>0)
,若
lim
x→0
f(x)存在,則常數(shù)b的值是( 。
A、0B、1C、-1D、e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列等式中,使M,A,B,C四點共面的個數(shù)是( 。
OM
=
OA
-
OB
-
OC
;
OM
=
1
5
OA
+
1
3
OB
+
1
2
OC
;
MA
+
MB
+
MC
=
0

OM
+
OA
+
OB
+
OC
=
0
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

因為無理數(shù)是無限小數(shù),而π是無理數(shù),所以π是無限小數(shù).屬于哪種推理(  )
A、合情推理B、演繹推理
C、類比推理D、歸納推理

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設一個焦點為(-1,0),且離心率e=
2
2
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
上下兩頂點分別為A,B,直線y=kx+2交橢圓C于P,Q兩點,直線PB與直線y=
1
2
交于點M.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:A,M,Q三點共線.

查看答案和解析>>

同步練習冊答案