【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
,(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)寫(xiě)出直線的極坐標(biāo)方程和圓
的直角坐標(biāo)方程;
(2)設(shè)為圓
上一動(dòng)點(diǎn),求點(diǎn)
到直線
的距離的最大值.
【答案】(1),
;(2)
【解析】
(1)先求出直線的直角坐標(biāo)方程,再用極坐標(biāo)轉(zhuǎn)換公式,寫(xiě)出直線
的極坐標(biāo)方程;將圓
極坐標(biāo)方程右邊的三角函數(shù)式展開(kāi),然后兩邊同時(shí)乘以
,用極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)換公式即可求出結(jié)果;
(2)直接求出圓心到直線的距離,然后加上半徑即可.
解:(1)由消去
得
.
令,
∴,
∴整理得,即為直線
的極坐標(biāo)方程;
∵,
∴,
∴.
∴將代入上式,得
,即為圓
的直角坐標(biāo)方程.
(2)∵圓的標(biāo)準(zhǔn)方程為
,
∴圓心,半徑
,
∴圓心到直線的距離
,
∴所求最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,a3+a5=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,若{bn}的前n項(xiàng)和為Tn,證明:Tn<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或
作品獲得一等獎(jiǎng)”; 乙說(shuō):“
作品獲得一等獎(jiǎng)”;
丙說(shuō):“ 兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):“是
作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在罰球線投球命中的概率分別為與
,且各次投球相互之間沒(méi)有影響.
(1)甲、乙兩人在罰球線各投球一次,求這二次投球中恰好命中一次的概率;
(2)甲、乙兩人在罰球線各投球二次,求這四次投球中至少有一次命中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體,平面
平面
,
,
,
,
是
的中點(diǎn),
是
上的點(diǎn).
(Ⅰ)若平面
,證明:
是
的中點(diǎn);
(Ⅱ)若,
,求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn),這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期,某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
(
)的左右焦點(diǎn)分別為
,
,離心率為
,點(diǎn)
在橢圓
上,
,
,過(guò)
與坐標(biāo)軸不垂直的直線
與橢圓
交于
,
兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若,
的中點(diǎn)為
,在線段
上是否存在點(diǎn)
,使得
?若存在,求實(shí)數(shù)
的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3-2x2+x+a,g(x)=-2x+,若對(duì)任意的x1∈[-1,2],存在x2∈[2,4],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為
,以原點(diǎn)
為圓心,短半軸長(zhǎng)為半徑的圓恰好經(jīng)過(guò)橢圓
的兩焦點(diǎn),且該圓截直線
所得的弦長(zhǎng)為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)定點(diǎn)的直線交橢圓
于兩點(diǎn)
、
,橢圓上的點(diǎn)
滿足
,試求
的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com