直線y=x+b與拋物線y2=2x,當(dāng)b=    時,有且只有一個公共點;當(dāng)b∈    時,有兩個不同的公共點;當(dāng)b∈    時,無公共點.
【答案】分析:先把直線方程代入拋物線方程消去x,求得方程得判別式,分別根據(jù)判別式等于0,大于0和小于0求得b的范圍.
解答:解:消去x得y2-2y+2b=0
△=4-8b=0,即b=時,直線與拋物線有一個公共點;
△=4-8b>0,即b<時,即b∈(-∞,)時,直線與拋物線有二個公共點;
△=4-8b<0,即b>時,即b∈(,+∞)時,直線與拋物線沒有個公共點;
故答案為,(-∞,),(,+∞).
點評:本題主要考查了直線與圓錐曲線的綜合問題.直線與圓錐曲線有無公共點或有幾個公共點的問題,實際上是研究它們的方程組成的方程是否有實數(shù)解成實數(shù)解的個數(shù)問題,此時要注意用好分類討論和數(shù)形結(jié)合的思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直L1:2x-y=0,L2:x-2y=0.動圓(圓心為M)被L1L2截得的弦長分別為8,16.
(Ⅰ)求圓心M的軌跡方程M;
(Ⅱ)設(shè)直線y=kx+10與方程M的曲線相交于A,B兩點.如果拋物y2=-2x上存在點N使得|NA|=|NB|成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江西省高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分13分)

已知雙曲線C: =1(a>0,b>0)的離心率為焦點到漸近線的距離為

(1)求雙曲線C的方程;

(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在拋物

線y2=4 x上,求m的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直L1:2x-y=0,L2:x-2y=0.動圓(圓心為M)被L1L2截得的弦長分別為8,16.
(Ⅰ)求圓心M的軌跡方程M;
(Ⅱ)設(shè)直線y=kx+10與方程M的曲線相交于A,B兩點.如果拋物y2=-2x上存在點N使得|NA|=|NB|成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省許昌市長葛三高高考數(shù)學(xué)調(diào)研試卷1(理科)(解析版) 題型:解答題

已知直L1:2x-y=0,L2:x-2y=0.動圓(圓心為M)被L1L2截得的弦長分別為8,16.
(Ⅰ)求圓心M的軌跡方程M;
(Ⅱ)設(shè)直線y=kx+10與方程M的曲線相交于A,B兩點.如果拋物y2=-2x上存在點N使得|NA|=|NB|成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案