A. | ($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$) | B. | |$\overrightarrow{a}$-$\overrightarrow$|2=|$\overrightarrow{a}$|2-2|$\overrightarrow{a}$||$\overrightarrow$|+|$\overrightarrow$|2 | ||
C. | 若|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow$的夾角為60° | D. | 若|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow$的夾角為60° |
分析 運(yùn)用向量的數(shù)量積的性質(zhì):向量的平方即為模的平方,以及向量的夾角的求法,即可判斷A,B,C不正確,D正確.
解答 解:對(duì)于A,($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$為與$\overrightarrow{c}$共線的向量,$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)為與$\overrightarrow{a}$共線的向量,故A不正確;
對(duì)于B,|$\overrightarrow{a}$-$\overrightarrow$|2=($\overrightarrow{a}$-$\overrightarrow$)2=$\overrightarrow{a}$2-2$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$2=|$\overrightarrow{a}$|2-2|$\overrightarrow{a}$|•|$\overrightarrow$|cos<$\overrightarrow{a}$,$\overrightarrow$>+|$\overrightarrow$|2,故B不正確;
對(duì)于C,若|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,即有|$\overrightarrow{a}$|2=|$\overrightarrow$|2=|$\overrightarrow{a}$+$\overrightarrow$|2=$\overrightarrow{a}$2+2$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$2,$\overrightarrow{a}$•$\overrightarrow$=-$\frac{1}{2}$$\overrightarrow{a}$2,cos<$\overrightarrow{a}$,$\overrightarrow$>=-$\frac{1}{2}$,
則$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,故C不正確;
對(duì)于D,若|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,即有|$\overrightarrow{a}$|2=|$\overrightarrow$|2=|$\overrightarrow{a}$-$\overrightarrow$|2=$\overrightarrow{a}$2-2$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$2,$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$$\overrightarrow{a}$2,cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{1}{2}$,
則$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,故D正確.
故選D.
點(diǎn)評(píng) 本題考查向量的數(shù)量積的性質(zhì)和夾角求法,屬于中檔題和易錯(cuò)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3\sqrt{17}}{2}$ | B. | 2$\sqrt{10}$ | C. | $\frac{13}{2}$ | D. | 3$\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com