【題目】在平面直角坐標系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(﹣4,0)、B(4,0).
(1)若A、B為橢圓的焦點,且橢圓經(jīng)過C、D兩點,求該橢圓的方程;
(2)若A、B為雙曲線的焦點,且雙曲線經(jīng)過C、D兩點,求雙曲線的方程.
【答案】
(1)解:∵A、B為橢圓的焦點,且橢圓經(jīng)過C、D兩點,
根據(jù)橢圓的定義:丨CA丨+丨CB丨=16=2a,
∴a=8,…4分
在橢圓中:b2=a2﹣c2=64﹣16=48,
∴橢圓方程為: ;
(2)解:∵A、B為雙曲線的焦點,且雙曲線經(jīng)過C、D兩點,
根據(jù)雙曲線的定義:丨CA丨﹣丨CB丨=4=2a′,
∴a′=2,…10分
在雙曲線中:b2=c2﹣a′2=16﹣4=12,
∴雙曲線方程為: .
【解析】(1)由橢圓的定義:丨CA丨+丨CB丨=16=2a,求得a=8,則b2=a2﹣c2=64﹣16=48,即可求得橢圓方程;(2)根據(jù)雙曲線的定義:丨CA丨﹣丨CB丨=4=2a′,則求得a′=2,則b2=c2﹣a′2=16﹣4=12,即可求得雙曲線的標準方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4一4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程是 (為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)寫出的極坐標方程和的直角坐標方程;
(2)已知點的極坐標分別為和,直線與曲線相交于兩點,射線
與曲線相交于點,射線與曲線相交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.
(1)求證:平面平面;
(2)若,且三棱錐的體積為,求側(cè)面的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面多邊形中,四邊形為正方形, , ,沿著將圖形折成圖2,其中, , 為的中點.
(1)求證: ;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的方程為 ,點A、B分別為其左、右頂點,點F1、F2分別為其左、右焦點,以點A為圓心,AF1為半徑作圓A;以點B為圓心,OB為半徑作圓B;若直線 被圓A和圓B截得的弦長之比為 ;
(1)求橢圓C的離心率;
(2)己知a=7,問是否存在點P,使得過P點有無數(shù)條直線被圓A和圓B截得的弦長之比為 ;若存在,請求出所有的P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標系中, 為坐標原點,曲線: (為參數(shù)),在以平面直角坐標系的原點為極點, 軸的正半軸為極軸,有相同單位長度的極坐標系中,直線: .
(Ⅰ)求曲線的普通方程和直線的直角坐標方程;
(Ⅱ)求與直線平行且與曲線相切的直線的直角坐標方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函數(shù)f(x)的解析式;
(2)當x∈ 時,f(x)的最小值是﹣4,求此時函數(shù)f(x)的最大值,并求出相應(yīng)的x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com