已知函數(shù)f(x)=
1
10
x+1,x≤1
lnx-1,x>1
,若方程f(x)=ax恰有兩個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程,分段函數(shù)的應(yīng)用
專(zhuān)題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,方程f(x)=ax恰有兩個(gè)不同實(shí)數(shù)根,等價(jià)于y=f(x)與y=ax有2個(gè)交點(diǎn),求出a的取值范圍.
解答: 解:當(dāng)x≤1時(shí)f(x)=
1
10
x
+1,∴
1
10
x
+1=ax,
∴a=
1
10
+
1
x

令g(x)=
1
10
+
1
x
,
∵x≤1 又g(x)在(-∞,0)和(0,1)上都是單調(diào)遞減的,
∴g(x)在x≤1上的值域是(-∞,0)∪(1.1,+∞)
當(dāng)x>1時(shí),f(x)=lnx-1=ax,得到a=
lnx-1
x
,
令h(x)=
lnx-1
x

∵x>1,∴h′(x)=
2-lnx
x2
,
令h′(x)=0,得到2-lnx=0 得到x=e2,
∴h(x)在x屬于(1,e2)上單調(diào)增,在(e2,+∞)上單調(diào)減,
∴h(x)的最大值為h(e2)=
1
e2

∵當(dāng)x<e時(shí),lnx-1<0,而x趨向正無(wú)窮時(shí),h(x)趨向0,
∴h(x)的最小值為h(1)=-1(但是開(kāi)區(qū)間 因?yàn)閤>1),
∴h(x)的值域是(-1,
1
e2
),
∵f(x)=ax恰有兩個(gè)不同的實(shí)數(shù)根,
∴a屬于(-1,0)∪(
1
10
1
e2
),
故答案為:(-1,0)∪(
1
10
,
1
e2
).
點(diǎn)評(píng):本題考查了函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,以及分類(lèi)討論的思想,以及函導(dǎo)數(shù)數(shù)與函數(shù)最值問(wèn)題,進(jìn)行解答,是易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知曲線(xiàn)C1
x2
3
+
y2
4
=1,以O(shè)為極點(diǎn),x軸的正半軸極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,直線(xiàn)l的方程為:ρ(2cosθ-sinθ)=6.
(1)試寫(xiě)出直線(xiàn)l的直角坐標(biāo)方程和曲線(xiàn)C1的參數(shù)方程;
(2)在曲線(xiàn)C1上求一點(diǎn)P,使點(diǎn)P到直線(xiàn)l的距離最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A、B、C的對(duì)邊為a、b、c,且2sinAsinC=sinAsinB+sinBsinC.
(Ⅰ)求角B的最大值;
(Ⅱ)設(shè)向量
a
=(
3
cos
B
2
+sin
B
2
,-1),
b
=(2cos
B
2
,
3
),求
a
b
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

α,β∈(0,
π
4
),cos(2α-β)=
3
2
,sin(α-2β)=-
1
2
,則cos(α+β)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若向量
OP
OA
OB
,且α+β=1,則A,B,P三點(diǎn)共線(xiàn);
②若z•
.
z
+z+
.
z
=3,則復(fù)數(shù)z的對(duì)應(yīng)點(diǎn)Z的在復(fù)平面內(nèi)的軌跡是圓;
③設(shè)f(x)=f′(1)x2+2x,則f′(2)=-6;
④曲線(xiàn)y=x3+3x2-5過(guò)點(diǎn)M(1,-1)的切線(xiàn)只有一條;
⑤在一個(gè)二面角的兩個(gè)面內(nèi)部都和二面角的棱垂直的兩個(gè)向量分別為(0,-1,3),(2,2,4),則這個(gè)二面角的余弦值為
15
6
.其中正確命題的序號(hào)是
 
.(把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,直線(xiàn)ρ(cosθ-sinθ)=1與直線(xiàn)ρcosθ=1的夾角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖矩形ORTM內(nèi)放置5個(gè)大小相同的正方形,其中A,B,C,D都在矩形的邊上,若向量
BD
=x
AE
-y
AF
,則x-2y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正四面體P-ABC中,E,F(xiàn)分別是AB、PC中點(diǎn),則異面直線(xiàn)BF與PE所成的角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是雙曲線(xiàn)
x2
9
-
y2
16
=1右支上的一點(diǎn),M、N分別是圓(x-5)2+y2=4和(x+5)2+y2=4上的點(diǎn),則|PM|-|PN|的最大值等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案