已知函數(shù),x∈[,],θ∈(,).
。1)當(dāng)=時(shí),求函數(shù)f (x)的最大值與最小值;
。2)求的取值范圍,使y= f (x)在區(qū)間[-1,]上是單調(diào)函數(shù);
(3)判斷函數(shù)f (x)的奇偶性,并證明你的結(jié)論.
(1)的最小值為;時(shí),的最大值為4
(2)的取值范圍是。
(3)當(dāng)時(shí),f(x)為偶函數(shù);當(dāng)時(shí),f(x)為非奇非偶函數(shù)。
(1)當(dāng)時(shí), = …………2分
∵,∴時(shí),的最小值為;時(shí),的最大值為4 ………6分
(2)函數(shù)圖象的對(duì)稱軸 ……………8分
∵在區(qū)間[-1,]上是單調(diào)函數(shù),
∴或,即或, ………… 10分
∴的取值范圍是。 …………… 12分)
(3)當(dāng)時(shí),f(x)為偶函數(shù);當(dāng)時(shí),f(x)為非奇非偶函數(shù)。…………………………………2分
證明:當(dāng)時(shí),對(duì),
∵f(x)=,==,
∴f(x)=,故f(x)為偶函數(shù); ………。阜
當(dāng)時(shí), …………10分
∵,,
∴,. ………………12分
∴f(x)為非奇非偶函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1-m(x-2) | x-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1-mx | x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
|x-3|-3 |
A、奇函數(shù) | B、偶函數(shù) |
C、既奇又偶函數(shù) | D、非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
A、充分而不必要條件 |
B、必要而不充分條件 |
C、充分必要條件 |
D、既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
b-a |
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com