若點P在曲線y=-x2+x+2上移動,且P點橫坐標(biāo)取值范圍是[0,
1
2
],經(jīng)過點P的切線的傾斜角為α,則α的取值范圍是(  )
A、[0,
π
2
]
B、[0,
π
4
]
C、[
π
4
,
4
]
D、[
4
,π]
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)函數(shù),根據(jù)切點P的橫坐標(biāo)的取值范圍,確定切線斜率的取值范圍,從而可得切線的傾斜角的取值范圍.
解答: 解:求導(dǎo)函數(shù)可得,y′=-2x+1
∵切點P的橫坐標(biāo)的取值范圍是[0,
1
2
],
∴-2x+1∈[0,1]
設(shè)切線的傾斜角為α,則tanα∈[0,1]
∵α∈[0,π)
∴α∈[0,
π
4
].
故選:B.
點評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查直線的傾斜角與斜率,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)振幅、相位、初相為方程y=Asin(ωx+φ)+b(A>0)的基本量,則方程y=3sin(2x-1)+4的基本量之和為(  )
A、4B、2x+3
C、8D、2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出10個數(shù):1,2,4,7,11…46,其規(guī)律是:第一個數(shù)是1,第二個數(shù)比第一個數(shù)大1,第三個數(shù)比第二個數(shù)大2,…以此類推,要計算這10個數(shù)的和,現(xiàn)已給出了該問題的程序如圖所示,那么框圖中判斷框①處和執(zhí)行框②處應(yīng)分別填入( 。
A、i≤10?,p=p+i-1
B、i≤9?,p=p+i
C、i≤10?,p=p+i
D、i≤11?,p=p+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)分別是棱A1B1,CD的中點,點M是EF的動點,F(xiàn)M=x,過點M、直線AB的平面將正方體分成上下兩部分,記下面那部分的體積為V(x),則函數(shù)V(x)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有4個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組的可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為(  )
A、
1
3
B、
1
4
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,c=18,b=12,C=60°,則cosB=(  )
A、
2
2
3
B、
6
3
C、
3
3
D、-
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),滿足條件z•(1+i)=2的復(fù)數(shù)z對應(yīng)的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x+φ)的圖象沿x軸向左平移
π
12
個單位后,得到函數(shù)g(x)的圖象,則“φ=-
π
6
”是“g(x)為偶函數(shù)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次招聘考試中,有12道備選題,其中8道A類題,4道B類題,每位考生都要在其中隨機(jī)抽出3道題回答
(Ⅰ)求某考生所抽到的3道題都是A類題的概率;
(Ⅱ)求所抽到的3道題不是同一類題的概率.

查看答案和解析>>

同步練習(xí)冊答案