已知函數(shù)y=
13
x3+x2+ax-5
在(-∞,+∞)總是單調(diào)函數(shù),則a的取值范圍是
a≥1
a≥1
分析:先求函數(shù)的導(dǎo)數(shù),因?yàn)楹瘮?shù)y=
1
3
x3+x2+ax-5
在(-∞,+∞)上是單調(diào)函數(shù),所以在(-∞,+∞)上y′≥0恒成立,再利用一元一次不等式的解得到a的取值范圍即可.
解答:解:函數(shù)y=
1
3
x3+x2+ax-5
的導(dǎo)數(shù)為y′=x2+2x+a,
∵函數(shù)y=
1
3
x3+x2+ax-5
在(-∞,+∞)上是單調(diào)函數(shù),
∴在(-∞,+∞)上y′≥0恒成立,
即x2+2x+a≥0恒成立,∴△=4-4a≤0,解得a≥1,
∴實(shí)數(shù)a的取值范圍是a≥1.
故答案為:a≥1.
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的單調(diào)區(qū)間,掌握函數(shù)恒成立時(shí)所取的條件,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
3
x3+x2+x
的圖象C上存在一點(diǎn)P(x0,y0)滿足:若過點(diǎn)P的直線l與曲線C交于不同于P的兩點(diǎn)M(x1,y1)、N(x2,y2),恒有y1+y2為定值2y0,則2y0的值為(  )
A、-
1
3
B、-
2
3
C、-
4
3
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
3
x3-
3a
2
x2+2a2x+1
在區(qū)間(-2,1)上有極大值,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
3
x3+x2-8x
的圖象C上存在一個(gè)定點(diǎn)P滿足:若過定點(diǎn)P的直線l與曲線C交于不同于P的兩點(diǎn)M(x1,y1),N(x2,y2),就恒有y1+y2為定值y0,則y0的值為( 。
A、-
1
3
B、
52
3
C、-
4
3
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
3
x3+x2+x
的圖象C上存在一點(diǎn)P滿足:若過點(diǎn)P的直線l與曲線C交于不同于P的兩點(diǎn)M(x1,y1)、N(x2,y2),恒有y1+y2為定值y0,則y0的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案