A. | $\frac{5}{2}$ | B. | $1+\frac{{\sqrt{3}}}{2}$ | C. | $\frac{3}{2}$ | D. | $1-\frac{{\sqrt{3}}}{2}$ |
分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得g(x)=-sinx,再利用定積分求得g(x)與x=-$\frac{π}{2}$,x=$\frac{π}{3}$,x軸圍成的圖形面積.
解答 解:將函數(shù)f(x)=$sin(2x-\frac{π}{4})$向右平移$\frac{3π}{8}$個單位,可得y=sin[2(x-$\frac{3π}{8}$)-$\frac{π}{4}$]=-sin(π-2x)=-sin2x的圖象;
再將所得的函數(shù)圖象上的各點縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,得到函數(shù)y=g(x)=-sinx的圖象,
故函數(shù)y=g(x)與x=-$\frac{π}{2}$,x=$\frac{π}{3}$,x軸圍成的圖形面積為${∫}_{-\frac{π}{2}}^{0}$(-sinx)-${∫}_{0}^{\frac{π}{3}}$(-sinx)=${|}_{-\frac{π}{2}}^{0}$cosx-${|}_{0}^{\frac{π}{3}}$(cosx)=1+$\frac{1}{2}$=$\frac{3}{2}$,
故選:C.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,用定積分求曲線圍成的面積,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(b-2)=f(a+1) | B. | f(b-2)>f(a+1) | C. | f(b-2)<f(a+1) | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com