精英家教網 > 高中數學 > 題目詳情
已知直線l過點(-2,0),當直線l與圓x2+y2=2x有兩個交點時,其斜率k的取值范圍是( )
A.
B.
C.
D.
【答案】分析:圓心到直線的距離小于半徑即可求出k的范圍.
解答:解:直線l為kx-y+2k=0,又直線l與圓x2+y2=2x有兩個交點

故選C.
點評:本題考查直線的斜率,直線與圓的位置關系,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知直線l過點(2,1),點O是坐標原點
(1)若直線l在兩坐標軸上截距相等,求直線l方程;
(2)若直線l與x軸正方向交于點A,與y軸正方向交于點B,當△AOB面積最小時,求直線l方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l過點(2,1),且在兩坐標軸上的截距互為相反數,則直線l的方程為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l過點(2,1)和點(4,3).
(Ⅰ)求直線l的方程;
(Ⅱ)若圓C的圓心在直線l上,且與y軸相切于(0,3)點,求圓C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l過點(-2,0),當直線l與圓x2+y2=2x有兩個交點時,其斜率k的取值范圍是
(-
2
4
2
4
(-
2
4
,
2
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l過點(-2,0),當直線l與圓x2-2x+y2=0有兩個交點時,其斜率k的取值范圍是( 。
A、(-2
2
,2
2
B、(-
2
2
C、(-
1
4
2
,
1
4
2
D、(-
1
8
,
1
8

查看答案和解析>>

同步練習冊答案