【題目】某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合 計

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合 計

70

30

100

⑴根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差

異”;

⑵已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機

抽取3人,求至多有1人喜歡甜品的概率.

0.100

0.050

0.010

2.706

3.841

6.635

附: ,

【答案】⑴見解析;⑵ .

【解析】試題分析:(1)求出數(shù)據(jù)的相關(guān)性,判斷相關(guān)性大于3.841,所以能有95%的把握.

(2)求出從這5個學(xué)生中抽取的3個學(xué)生有10中組合,而3個學(xué)生中至多有1人喜歡甜品的組合有7中,就能求得至多有1人喜歡甜品的概率.

試題解析⑴

所以有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”. …6分

⑵從5名數(shù)學(xué)系學(xué)生中任取3人的一切可能結(jié)果所組成的基本事件共10個: , , , , , , , , ,其中 表示喜歡甜品的學(xué)生, 表示不喜歡甜品的學(xué)生,且這些基本事件的出現(xiàn)是等可能的.用表示“3人中至多有1人喜歡甜品”這一事件,則事件由7個基本事件組成: , , , , ,

.

點睛:古典概型中基本事件數(shù)的探求方法

(1)列舉法.

(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.

(3)列表法:適用于多元素基本事件的求解問題,通過列表把復(fù)雜的題目簡單化、抽象的題目具體化.

(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某生產(chǎn)線上質(zhì)量監(jiān)督員甲對產(chǎn)品質(zhì)量好壞有無影響,現(xiàn)統(tǒng)計數(shù)據(jù)如下:質(zhì)量監(jiān)督員甲在生產(chǎn)現(xiàn)場時,990件產(chǎn)品中合格品有982件,次品有8件;甲不在生產(chǎn)現(xiàn)場時,510件產(chǎn)品中合格品有493件,次品有17件,試分別用列聯(lián)表、獨立性檢驗的方法分析監(jiān)督員甲是否在生產(chǎn)現(xiàn)場對產(chǎn)品質(zhì)量好壞有無影響?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的通項公式是

(1)判斷是否是數(shù)列項;

(2)試判斷數(shù)列中的項是否都在區(qū)間內(nèi);

(3)試判斷在區(qū)間內(nèi)是否有無數(shù)列中的項?若有是第幾項?若沒有請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測可知,進(jìn)入21世紀(jì)以來,該產(chǎn)品的產(chǎn)量平穩(wěn)增長.記2009年為第1年,且前4年中,第x年與年產(chǎn)量f(x) 萬件之間的關(guān)系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三種函數(shù)模型之一:f(x)=axb,f(x)=2xaf(x)=logxa.

(1)找出你認(rèn)為最適合的函數(shù)模型,并說明理由,然后選取其中你認(rèn)為最適合的數(shù)據(jù)求出相應(yīng)的解析式;

(2)因遭受某國對該產(chǎn)品進(jìn)行反傾銷的影響,2015年的年產(chǎn)量比預(yù)計減少30%,試根據(jù)所建立的函數(shù)模型,確定2015年的年產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的極小值;

2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

3)若在區(qū)間上存在一點,使得成立,求的取值范圍,(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的通項公式是

(1)判斷是否是數(shù)列項;

(2)試判斷數(shù)列中的項是否都在區(qū)間內(nèi);

(3)試判斷在區(qū)間內(nèi)是否有無數(shù)列中的項?若有,是第幾項?若沒有請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記全集U={1,2,3,4,5,6,7,8},A={1,2,3,5},B={2,4,6},則圖中陰影部分所表示的集合是(
A.{4,6,7,8}
B.{2}
C.{7,8}
D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm容器Ⅱ的兩底面對角線,的長分別為14cm62cm.分別在容器Ⅰ和容器Ⅱ中注入水水深均為12cm現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計)

(1)將放在容器Ⅰ中的一端置于點A處,另一端置于側(cè)棱上,沒入水中部分的長度;

(2)將放在容器Ⅱ中的一端置于點E處,另一端置于側(cè)棱上,求沒入水中部分的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

I)若,求函數(shù)的單調(diào)區(qū)間;(其中是自然對數(shù)的底數(shù))

II)設(shè)函數(shù),當(dāng)時,曲線有兩個交點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案