【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)y=f(x)的圖象(
A.關(guān)于點(diǎn)( ,0)對稱
B.關(guān)于直線x= 對稱
C.關(guān)于點(diǎn)( ,0)對稱
D.關(guān)于直線x= 對稱

【答案】D
【解析】解:由題意可得 =π,解得ω=2,故函數(shù)f(x)=sin(2x+φ),其圖象向右平移 個(gè)單位后得到的圖象對應(yīng)的函數(shù)為
y=sin[2(x﹣ )+φ]=sin(2x﹣ +φ]是奇函數(shù),又|φ|< ,故φ=﹣ ,
故函數(shù)f(x)=sin(2x﹣ ),故當(dāng)x= 時(shí),函數(shù)f(x)=sin =1,故函數(shù)f(x)=sin(2x﹣ ) 關(guān)于直線x= 對稱,
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列1,a1 , a2 , 9是等差數(shù)列,數(shù)列1,b1 , b2 , b3 , 9是等比數(shù)列,則 的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實(shí)數(shù)滿足,若目標(biāo)函數(shù)的最大值為6,則的最小值為( )

A. B. C. D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間共有名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).

(Ⅰ) 根據(jù)莖葉圖計(jì)算樣本均值;

(Ⅱ) 日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;

(Ⅲ) 從該車間名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從甲、乙兩種麥苗的試驗(yàn)田中各抽取6株麥苗測量麥苗的株高,數(shù)據(jù)如下:(單位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;

(2)分別計(jì)算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長勢情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的焦點(diǎn)、軸上,且橢圓經(jīng)過,過點(diǎn)的直線交于點(diǎn),與拋物線 交于、兩點(diǎn),當(dāng)直線時(shí)的周長為

(Ⅰ)求的值和的方程;

(Ⅱ)以線段為直徑的圓是否經(jīng)過上一定點(diǎn),若經(jīng)過一定點(diǎn)求出定點(diǎn)坐標(biāo),否則說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是某校高三一次月考5個(gè)班級的數(shù)學(xué)、物理的平均成績:

班級

1

2

3

4

5

數(shù)學(xué)(分)

111

113

119

125

127

物理(分)

92

93

96

99

100

(Ⅰ)一般來說,學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),求兩個(gè)變量, 的線性回歸方程;

(Ⅱ)從以上5個(gè)班級中任選兩個(gè)參加某項(xiàng)活動(dòng),設(shè)選出的兩個(gè)班級中數(shù)學(xué)平均分在115分以上的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是某校高三一次月考5個(gè)班級的數(shù)學(xué)、物理的平均成績:

班級

1

2

3

4

5

數(shù)學(xué)(分)

111

113

119

125

127

物理(分)

92

93

96

99

100

(Ⅰ)一般來說,學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),求兩個(gè)變量, 的線性回歸方程

(Ⅱ)從以上5個(gè)班級中任選兩個(gè)參加某項(xiàng)活動(dòng),設(shè)選出的兩個(gè)班級中數(shù)學(xué)平均分在115分以上的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

附: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)點(diǎn), , 分別為橢圓的左頂點(diǎn)和左,右焦點(diǎn),過點(diǎn)作斜率為的直線交橢圓于另一點(diǎn),連接并延長交橢圓于點(diǎn).

(1)求點(diǎn)的坐標(biāo)(用表示);

(2)若,求的值.

查看答案和解析>>

同步練習(xí)冊答案