設(shè)解f(f(f(-1)))=______.

答案:略
解析:


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【解析圖片】設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(-1)=0,且對任意實(shí)數(shù)x,均有x-1≤f(x)≤x2-3x+3恒成立.
(1)求f(x)的表達(dá)式;
(2)若關(guān)于x的不等式f(x)≤nx-1的解集非空,求實(shí)數(shù)n的取值的集合A.
(3)若關(guān)于x的方程f(x)=nx-1的兩根為x1,x2,試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≤|x1-x2|對任意n∈A及t∈[-3,3]恒成立?若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R).
(Ⅰ) 已知f(0)=1,
  (。┤鬴(x)<0的解集為(
12
,1)
,求f(x)的表達(dá)式;
  (ⅱ)若f(1)=0,且a<1,試用含a的代數(shù)式表示b,并求此時f(x)>0的解集.
(Ⅱ) 已知a=1,若x1,x2是方程f(x)=0的兩個根,且x1,x2∈(m,m+1),其中m∈R,求f(m)f(m+1)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:022

設(shè)f(f(f(1)))=______

查看答案和解析>>

同步練習(xí)冊答案