設正項數(shù)列都是等差數(shù)列,且公差相等,(1)求的通項公式;(2)若的前三項,記數(shù)列數(shù)列的前n項和為

(1),
(2)由, ……。

解析試題分析:設的公差為,則,即,
是等差數(shù)列得到:
(或=   2分,)
,所以,  4分,
所以:……5分,  6分
(2)由,得到:等比數(shù)列的公比
所以:,   8分
所以  10分
……      12分
考點:本題主要考查等差中項、等比數(shù)列的的基礎知識,“裂項相消法”,不等式的證明。
點評:中檔題,本題綜合考查等差數(shù)列、等比數(shù)列的基礎知識,本解答從確定通項公式入手,明確了所研究數(shù)列的特征!胺纸M求和法”、“錯位相消法”、“裂項相消法”是高考常?嫉綌(shù)列求和方法。先求和,在利用“放縮法”證明不等式,是常用方法。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和為,且對任意的都有 ,
(Ⅰ)求數(shù)列的前三項;
(Ⅱ)猜想數(shù)列的通項公式,并用數(shù)學歸納法證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和為,且
(1)求數(shù)列的通項公式;(2)設,數(shù)列的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列中,
(Ⅰ)求數(shù)列的前項和;
(Ⅱ)若存在,使得成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列的前項和為,且
(1)寫出的遞推關系式,并求,,的值;
(2)猜想關于的表達式,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

觀察下列三角形數(shù)表

記第行的第m個數(shù)為 
(Ⅰ)分別寫出,值的大。
(Ⅱ)歸納出的關系式,并求出關于n的函數(shù)表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)若函數(shù)在區(qū)間上有極值,求實數(shù)的取值范圍;
(2)若關于的方程有實數(shù)解,求實數(shù)的取值范圍;
(3)當時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在數(shù)列中,成等差數(shù)列,成等比數(shù)列
(1)求;
(2)猜想的通項公式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(理)對于數(shù)列,從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學在學習了這一個概念之后,打算研究首項為正整數(shù),公比為正整數(shù)的無窮等比數(shù)列的子數(shù)列問題. 為此,他任取了其中三項.
(1) 若成等比數(shù)列,求之間滿足的等量關系;
(2) 他猜想:“在上述數(shù)列中存在一個子數(shù)列是等差數(shù)列”,為此,他研究了的大小關系,請你根據(jù)該同學的研究結(jié)果來判斷上述猜想是否正確;
(3) 他又想:在首項為正整數(shù),公差為正整數(shù)的無窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請你就此問題寫出一個正確命題,并加以證明.

查看答案和解析>>

同步練習冊答案