【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
【答案】A
【解析】解:設(shè)g(x)= ,則g(x)的導(dǎo)數(shù)為:g′(x)= ,
∵當(dāng)x>0時(shí)總有xf′(x)<f(x)成立,
即當(dāng)x>0時(shí),g′(x)恒小于0,
∴當(dāng)x>0時(shí),函數(shù)g(x)= 為減函數(shù),
又∵g(﹣x)= = = =g(x),
∴函數(shù)g(x)為定義域上的偶函數(shù)
又∵g(﹣1)= =0,
∴函數(shù)g(x)的圖象性質(zhì)類似如圖:
數(shù)形結(jié)合可得,不等式f(x)>0xg(x)>0
或 ,
0<x<1或x<﹣1.
故選:A.
由已知當(dāng)x>0時(shí)總有xf′(x)﹣f(x)<0成立,可判斷函數(shù)g(x)= 為減函數(shù),由已知f(x)是定義在R上的奇函數(shù),可證明g(x)為(﹣∞,0)∪(0,+∞)上的偶函數(shù),根據(jù)函數(shù)g(x)在(0,+∞)上的單調(diào)性和奇偶性,模擬g(x)的圖象,而不等式f(x)>0等價(jià)于xg(x)>0,數(shù)形結(jié)合解不等式組即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游愛(ài)好者計(jì)劃從3個(gè)亞洲國(guó)家A1,A2,A3和3個(gè)歐洲國(guó)家B1,B2,B3中選擇2個(gè)國(guó)家去旅游.
(1)若從這6個(gè)國(guó)家中任選2個(gè),求這2個(gè)國(guó)家都是亞洲國(guó)家的概率;
(2)若從亞洲國(guó)家和歐洲國(guó)家中各選1個(gè),求這兩個(gè)國(guó)家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,S3 , S9 , S6成等差數(shù)列,且a2+a5=2am , 則m= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足 ,記數(shù)列{an}的前n項(xiàng)和為Sn , cn=Sn﹣2n+2ln(n+1)
(1)令 ,證明:對(duì)任意正整數(shù)n,|sin(bnθ)|≤bn|sinθ|
(2)證明數(shù)列{cn}是遞減數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在[1,+∞]上的函數(shù),且f(x)= ,則函數(shù)y=2xf(x)﹣3在區(qū)間(1,2015)上零點(diǎn)的個(gè)數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=sinxcosx﹣cos2(x+ ).
(1)求f(x)的單調(diào)區(qū)間;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f( )=0,a=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知條件p:A={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R},條件q:B={x|x2﹣2x﹣3≤0,x∈R}.
(1)若A∩B={x|0≤x≤3},求實(shí)數(shù)m的值;
(2)若q是¬p的充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:(a-1)x+y+b=0,l2:ax+by-4=0,求滿足下列條件的a,b的值.
(1)l1⊥l2,且l1過(guò)點(diǎn)(1,1);
(2)l1∥l2,且l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)和為,且,,.
(1)若,求的通項(xiàng)公式;
(2)若,求.
【答案】(1);(2)21或.
【解析】試題分析:(1)設(shè)等差數(shù)列公差為,等比數(shù)列公比為,由已知條件求出,再寫出通項(xiàng)公式;(2)由,求出的值,再求出的值,求出。
試題解析:設(shè)等差數(shù)列公差為,等比數(shù)列公比為有,即.
(1)∵,結(jié)合得,
∴.
(2)∵,解得或3,
當(dāng)時(shí),,此時(shí);
當(dāng)時(shí),,此時(shí).
【題型】解答題
【結(jié)束】
20
【題目】如圖,已知直線與拋物線相交于兩點(diǎn),且, 交于,且點(diǎn)的坐標(biāo)為.
(1)求的值;
(2)若為拋物線的焦點(diǎn), 為拋物線上任一點(diǎn),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com