【題目】求滿足下列條件的方法種數(shù):
(1)將4個不同的小球,放進(jìn)4個不同的盒子,且沒有空盒子,共有多少種放法?
(2)將4個不同的小球,放進(jìn)3個不同的盒子,且沒有空盒子,共有多少種放法?(最后結(jié)果用數(shù)字作答)
【答案】
(1)解:根據(jù)題意,將4個小球全排列,對應(yīng)放入4個不同的盒子,
有A44=24種情況,即有24種放法
(2)解:分2步進(jìn)行分析:
①、將4個小球分成3組,其中1組2個小球,剩余2組各1個小球,有C42=6種分組方法,
②、將分好的3組全排列,對應(yīng)放入3個不同的盒子,有A33=6種情況,
則此時有6×6=36種不同的放法
【解析】(1)根據(jù)題意,將4個小球全排列,對應(yīng)放入4個不同的盒子,由排列數(shù)公式計算即可得答案;(2)分2步進(jìn)行分析:①、將4個小球分成3組,其中1組2個小球,剩余2組各1個小球,②、將分好的3組全排列,對應(yīng)放入3個不同的盒子,由分步計數(shù)原理計算可得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l⊥平面α,直線m平面β,給出下列命題 ①α∥β=l⊥m;
②α⊥βl∥m;
③l∥mα⊥β;
④l⊥mα∥β.
其中正確命題的序號是( )
A.①②③
B.②③④
C.①③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義一個集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個數(shù),給出下列命題: ①對于任意集合A,都有A∈P(A);
②存在集合A,使得n[P(A)]=3;
③用表示空集,若A∩B=,則P(A)∩P(B)=;
④若AB,則P(A)P(B);
⑤若n(A)﹣n(B)=1,則n[P(A)]=2×n[P(B)].
其中正確的命題個數(shù)為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題“若x2+y2=0,則x=y(tǒng)=0”的否命題是( )
A. 若x2+y2=0,則x,y中至少有一個不為0
B. 若x2+y2≠0,則x,y中至少有一個不為0
C. 若x2+y2≠0,則x,y都不為0
D. 若x2+y2=0,則x,y都不為0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1+a2+…+an=2a2(n=1,2,3,…),則( )
A.a1<0
B.a1>0
C.a1≠a2
D.a2=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“|x|<2”是“x2﹣x﹣6<0”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列兩個變量之間的關(guān)系不是函數(shù)關(guān)系的是( )
A. 出租車車費(fèi)與出租車行駛的里程
B. 商品房銷售總價與商品房建筑面積
C. 鐵塊的體積與鐵塊的質(zhì)量
D. 人的身高與體重
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com