分析 由已知利用余弦定理可求得AC的值,由正弦定理可求得sin∠BAC的值,從而得解.
解答 解:∵∠ABC=45°,AB=$\sqrt{2}$,BC=3,
∴由余弦定理可得:AC2=AB2+BC2-2AB•BC•cos∠ABC=2+9-2×$\sqrt{2}×3×sin45°$=5,可得AC=$\sqrt{5}$,
∴由正弦定理可得:sin∠BAC=$\frac{BC•sin∠ABC}{AC}$=$\frac{3×sin45°}{\sqrt{5}}$=$\frac{{3\sqrt{10}}}{10}$.
故答案為:$\frac{{3\sqrt{10}}}{10}$.
點評 本題主要考查了正弦定理,余弦定理在解三角形中的應用,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{2}$,-$\frac{1}{2}$,-1 | B. | $\frac{5}{2}$,$\frac{1}{2}$,1 | C. | -$\frac{5}{2}$,$\frac{1}{2}$,1 | D. | $\frac{5}{2}$,-$\frac{1}{2}$,1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 她兒子10周歲時的身高一定是145.83cm | |
B. | 她兒子10周歲時的身高在145.83cm以上 | |
C. | 她兒子10周歲時的身高在145.83cm左右 | |
D. | 她兒子10周歲時的身高在145.83cm以下 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | $\frac{1}{32}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com