【題目】函數(shù)(其中),若函數(shù)的圖象與軸的任意兩個相鄰交點間的距離為,且函數(shù)的圖象過點

1)求的解析式;

2)求的單調增區(qū)間:

3)求的值域.

【答案】1;(2;(3

【解析】

1)依據(jù)題意可得函數(shù)周期為,利用周期公式算出,又函數(shù)過定點,即可求出,進而得出解析式;(2)利用正弦函數(shù)的單調性代換即可求出函數(shù)的單調區(qū)間;(3)利用換元法,設,結合上的圖象即可求出函數(shù)的值域

1)因為函數(shù)的圖象與軸的任意兩個相鄰交點間的距離為,所以函數(shù)的周期為,由,得,又函數(shù)的圖象過點

所以,即,而,所以,

的解析式為。

(2)由的單調增區(qū)間是可得

,解得

故故函數(shù)的單調遞增區(qū)間是

3)設 ,,則 ,由上的圖象知,當 時, 趨于時,函數(shù)值趨于1,

的值域為 。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)φ(x)= ,a>0
(1)若函數(shù)f(x)=lnx+φ(x),在(1,2)上只有一個極值點,求a的取值范圍;
(2)若g(x)=|lnx|+φ(x),且對任意x1 , x2∈(0,2],且x1≠x2 , 都有 <﹣1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,是半圓的直徑,垂直于半圓所在的平面,點是圓周上不同于的任意一點,分別為的中點,則下列結論正確的是(  )

A.B.平面平面

C.所成的角為45°D.平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在ABC中,角A,B,C的對邊分別為a,b,c,若△ABC為銳角三角形,且滿足sinB(1+2cosC)=2sinAcosC+cosAsinC,則下列等式成立的是(  )
A.a=2b
B.b=2a
C.A=2B
D.B=2A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A=60°,AB=3,AC=2.若 =2 , (λ∈R),且 =﹣4,則λ的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.(12分)
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標伸長為原來的2倍(縱坐標不變),再將得到的圖象向左平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ ]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 、 滿足| |=1,| |=2,則| + |+| |的最小值是 , 最大值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sin(A+C)=8sin2
(Ⅰ)求cosB;
(Ⅱ)若a+c=6,△ABC面積為2,求b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)exf(x)(e≈2.71828…是自然對數(shù)的底數(shù))在f(x)的定義域上單調遞增,則稱函數(shù)f(x)具有M性質.下列函數(shù)中所有具有M性質的函數(shù)的序號為
①f(x)=2x②f(x)=3x③f(x)=x3④f(x)=x2+2.

查看答案和解析>>

同步練習冊答案