A. | [1,2] | B. | (0,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,2] | D. | (0,2] |
分析 由題意可得,函數(shù)f(x)在[0,+∞)上單調遞增,利用對數(shù)的運算性質化簡所給的不等式可得 log2a≤1,由此求得a的范圍.
解答 解:由題意可得,函數(shù)f(x)在[0,+∞)上單調遞增,f(log2a)+f(log${\;}_{\frac{1}{2}}$a)≤2f(1),
即f(log2a)+f(${log}_{2}\frac{1}{a}$)≤2f(1),即 f(log2a)+f(-log2a)≤2f(1),
即2f(log2a)≤2f(1),即 f(log2a)≤f(1),∴-1≤log2a≤1,∴$\frac{1}{2}$≤a≤2,
故選:C.
點評 本題主要考查函數(shù)的單調性的判斷和應用,對數(shù)的運算性質,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | MP<OM<0 | B. | MP<0<OM | C. | MP>OM>0 | D. | OM>MP>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,-1,0} | B. | {-2,2,0} | C. | $\{2,-\frac{1}{2},\frac{{-5+\sqrt{41}}}{4}\}$ | D. | $\{2,\frac{1}{2},\frac{{-5-\sqrt{41}}}{4}\}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com