13.雙曲線${y^2}-\frac{x^2}{2}=1$的焦距是2$\sqrt{3}$,漸近線方程是$y=±\frac{\sqrt{2}}{2}x$.

分析 利用雙曲線方程,求出雙曲線的幾何量,然后求解即可.

解答 解:雙曲線${y^2}-\frac{x^2}{2}=1$可得a=1,b=$\sqrt{2}$,雙曲線的焦距是2c=2$\sqrt{1+2}$=2$\sqrt{3}$.
雙曲線的漸近線方程為:$y=±\frac{\sqrt{2}}{2}x$.
故答案為:$2\sqrt{3},y=±\frac{{\sqrt{2}}}{2}x$.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì),考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=ax3-bx+4,f(1)=7,則f(-1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.根據(jù)對(duì)數(shù)函數(shù)的圖象和性質(zhì)填空.
(1)已知函數(shù)y=log2x,則當(dāng)x>0時(shí),y∈(-∞,+∞),當(dāng)x>1時(shí),y∈(0,+∞).當(dāng)0<x<1時(shí),y∈(-∞,0);當(dāng)x>4時(shí),y∈(2,+∞).
(2)已知函數(shù)y=log${\;}_{\frac{1}{3}}$x,則當(dāng)0<x<1時(shí),y∈(0,+∞),當(dāng)x>1時(shí),y∈(-∞,0).當(dāng)x>5時(shí),y∈(-∞,log${\;}_{\frac{1}{3}}$5);當(dāng)0<x<2時(shí),y∈(log${\;}_{\frac{1}{3}}$2,+∞);當(dāng)y>2時(shí),x∈(0,$\frac{1}{9}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)向量$\{\overrightarrow a,\overrightarrow b,\overrightarrow c\}$是空間一個(gè)基底,則一定可以與向量$\overrightarrow p=\overrightarrow a+\overrightarrow b,\overrightarrow q=\overrightarrow a-\overrightarrow b$構(gòu)成空間的另一個(gè)基底的向量是( 。
A.$\overrightarrow a$B.$\overrightarrow b$C.$\overrightarrow c$D.$\overrightarrow{a}$或$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實(shí)數(shù)a,b滿足不等式log2a<log3b,則不可能成立的是( 。
A.0<b<a<1B.0<a<b<1C.1<a<bD.1<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在三棱錐S-ABC中,SA⊥平面ABC,SA=4,底面△ABC是邊長(zhǎng)為3的正三角形,則三棱錐S-ABC的外接球的表面積為(  )
A.19πB.28πC.43πD.76π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)$f(x)={log_2}(a-{2^x})+x-2$,當(dāng)$x∈[0,\frac{1}{2}]$時(shí),f(x)≤0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,4]B.$(\sqrt{2},4]$C.$(-∞,3\sqrt{2}]$D.$(\sqrt{2},3\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,⊙O是△ABC的外接圓,C是優(yōu)弧AB上一點(diǎn),設(shè)∠OAB=α,∠C=β.
(1)當(dāng)α=36°時(shí),求β的度數(shù);
(2)猜想α與β之間的關(guān)系,并給予證明.
(3)若點(diǎn)C平分優(yōu)弧AB,且BC2=3OA2,試求α的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-ax,(a>0),$g(x)=sinxsin({x+\frac{π}{6}})-\frac{{\sqrt{3}}}{4}$,命題p:an=f(n)是遞增數(shù)列,命題q:g(x)在(a,π)上有且僅有2條對(duì)稱軸.
①求g(x)的周期和單調(diào)遞增區(qū)間;
②若p∧q為真,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案