正方形ABCD的兩對(duì)角線AC與BD交于O,沿對(duì)角線BD折起,使∠AOC=90°對(duì)于下列結(jié)論:①AC⊥BD;②△ADC是正三角形;③AB與CD成60°角;④AB與平面BCD成60°角,其中正確的結(jié)論是
 
分析:由正方體的幾何特征,可得BD⊥平面AOC,根據(jù)線面垂直的性質(zhì)定理,可判斷①的真假;由三余弦定理,求出∠ADC的余弦值,我們可以確定∠ADC的大小,進(jìn)而判斷出△ADC的形狀,判斷出②③的真假,根據(jù)線面夾角的定理,我們易得∠ABO即為AB與平面BCD成角,求出∠ABO的大小,可以判斷④的真假,進(jìn)而得到答案.
解答:精英家教網(wǎng) 解:由正方形的幾何特征可得:
BD⊥OC,BD⊥OA,得BD⊥平面AOC,
故BD⊥AC,故①正確;
cos∠ADC=cos45°•cos45°=
1
2

∴∠ADC=60°,AD=DC,
△ADC是正三角形,故②正確;
由②中結(jié)論可得,AB與CD成60°角,故③正確;
而AB與平面BCD成角∠ABO=45°,故④錯(cuò)誤
故答案為:①②③
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面與平面垂直的性質(zhì),直線與平面所成的角,三角形形狀的判斷,異面直線的夾角,其中熟練掌握空間中直線與平面夾角及平行、垂直關(guān)系的定義、判定、性質(zhì)和幾何特征是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將邊長為3的正方形ABCD繞中心O順時(shí)針旋轉(zhuǎn)α (0<α<
π
2
)得到正方形A′B′C′D′.根據(jù)平面幾何知識(shí),有以下兩個(gè)結(jié)論:
①∠A′FE=α;
②對(duì)任意α (0<α<
π
2
),△EAL,△EA′F,△GBF,△GB′H,△ICH,△IC′J,△KDJ,△KD′L均是全等三角形.
(1)設(shè)A′E=x,將x表示為α的函數(shù);
(2)試確定α,使正方形A′B′C′D′與正方形ABCD重疊部分面積最小,并求最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重難點(diǎn)手冊 高中數(shù)學(xué)·必修4(配人教A版新課標(biāo)) 人教A版新課標(biāo) 題型:013

已知O是四邊形ABCD內(nèi)一點(diǎn),若=0,則四邊形ABCD是怎樣的四邊形?點(diǎn)O是四邊形ABCD的什么點(diǎn)?對(duì)于這兩個(gè)問題,下列結(jié)論中正確的為(  ).

[  ]

A.四邊形ABCD為正方形,點(diǎn)O是正方形ABCD的中心

B.四邊形ABCD為一般四邊形,點(diǎn)O是四邊形ABCD的對(duì)角線交點(diǎn)

C.四邊形ABCD為一般四邊形,點(diǎn)O是四邊形ABCD的外接圓的圓心

D.四邊形ABCD為一般四邊形,點(diǎn)O是四邊形ABCD對(duì)邊中點(diǎn)連線的交點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)高手必修四數(shù)學(xué)蘇教版 蘇教版 題型:013

已知O是四邊形ABCD內(nèi)一點(diǎn),若0,則四邊形ABCD是怎樣的一個(gè)四邊形,點(diǎn)O是四邊形ABCD的什么點(diǎn)?對(duì)于這兩個(gè)問題,下列結(jié)論中正確的是

[  ]
A.

四邊形ABCD是正方形,點(diǎn)O是正方形ABCD的中心

B.

四邊形ABCD是一般四邊形,點(diǎn)O是四邊形ABCD對(duì)角線的交點(diǎn)

C.

四邊形ABCD是一般四邊形,點(diǎn)O是四邊形ABCD外接圓的圓心

D.

四邊形ABCD是一般四邊形,點(diǎn)O是四邊形ABCD對(duì)邊中點(diǎn)連線的交點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期期中考試數(shù)學(xué)理卷 題型:填空題

如圖,空間有兩個(gè)正方形ABCDADEF,M、N分別為BD、AE的中點(diǎn),則以下結(jié)論中正確的是              (填寫所

有正確結(jié)論對(duì)應(yīng)的序號(hào))

MNAD;                         

MNBF的是對(duì)異面直線;

MN//平面ABF                      

MNAB的所成角為60°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方形ABCD的邊長為2,動(dòng)點(diǎn)P到該正方形兩組對(duì)邊距離的積相等,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案