點(1,1)到直線2x+y-6=0的距離為________.

 

【答案】

【解析】由點到直線的距離公式可得.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:黃岡重點作業(yè)·高三數(shù)學(xué)(下) 題型:013

設(shè)θ∈[-π,π],則點P(1,1)到直線xcosθ+ysinθ=2的最大距離是

[  ]

A.2
B.
C.2+
D.2-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

點B(1,0)到直線的距離為

[  ]

A.
B.2
C.0
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆安徽泗縣雙語中學(xué)高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

點P(-1,2)到直線的距離為(      )

A.2   B.   C.1   D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第五次月考理科數(shù)學(xué) 題型:解答題

已知點P是直角坐標(biāo)平面內(nèi)的動點,點P到直線的距離為d1,到點F(– 1,0)的距離為d2,且

(1)    求動點P所在曲線C的方程;

(2)    直線過點F且與曲線C交于不同兩點A、B(點AB不在x軸上),分別過A、B點作直線的垂線,對應(yīng)的垂足分別為,試判斷點F與以線段為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);

(3)    記,(A、B是(2)中的點),問是否存在實數(shù),使成立.若存在,求出的值;若不存在,請說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(課標(biāo)卷解析版) 題型:解答題

設(shè)拋物線>0)的焦點為,準(zhǔn)線為上一點,已知以為圓心,為半徑的圓,兩點.

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,,三點在同一條直線上,直線平行,且只有一個公共點,求坐標(biāo)原點到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點為E,圓F的半徑為,

則|FE|==,E是BD的中點,

(Ⅰ) ∵,∴=,|BD|=,

設(shè)A(,),根據(jù)拋物線定義得,|FA|=,

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:

(Ⅱ) 解析1∵,,三點在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-

∴直線的方程為:,∴原點到直線的距離=

設(shè)直線的方程為:,代入得,

只有一個公共點, ∴=,∴,

∴直線的方程為:,∴原點到直線的距離=

∴坐標(biāo)原點到,距離的比值為3.

解析2由對稱性設(shè),則

      點關(guān)于點對稱得:

     得:,直線

     切點

     直線

坐標(biāo)原點到距離的比值為

 

查看答案和解析>>

同步練習(xí)冊答案