科目:高中數(shù)學(xué) 來源:黃岡重點作業(yè)·高三數(shù)學(xué)(下) 題型:013
設(shè)θ∈[-π,π],則點P(1,1)到直線xcosθ+ysinθ=2的最大距離是
[ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆安徽泗縣雙語中學(xué)高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
點P(-1,2)到直線的距離為( )
A.2 B. C.1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第五次月考理科數(shù)學(xué) 題型:解答題
已知點P是直角坐標(biāo)平面內(nèi)的動點,點P到直線的距離為d1,到點F(– 1,0)的距離為d2,且.
(1) 求動點P所在曲線C的方程;
(2) 直線過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線的垂線,對應(yīng)的垂足分別為,試判斷點F與以線段為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3) 記,,(A、B、是(2)中的點),問是否存在實數(shù),使成立.若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(課標(biāo)卷解析版) 題型:解答題
設(shè)拋物線:(>0)的焦點為,準(zhǔn)線為,為上一點,已知以為圓心,為半徑的圓交于,兩點.
(Ⅰ)若,的面積為,求的值及圓的方程;
(Ⅱ)若,,三點在同一條直線上,直線與平行,且與只有一個公共點,求坐標(biāo)原點到,距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.
【解析】設(shè)準(zhǔn)線于軸的焦點為E,圓F的半徑為,
則|FE|=,=,E是BD的中點,
(Ⅰ) ∵,∴=,|BD|=,
設(shè)A(,),根據(jù)拋物線定義得,|FA|=,
∵的面積為,∴===,解得=2,
∴F(0,1), FA|=, ∴圓F的方程為:;
(Ⅱ) 解析1∵,,三點在同一條直線上, ∴是圓的直徑,,
由拋物線定義知,∴,∴的斜率為或-,
∴直線的方程為:,∴原點到直線的距離=,
設(shè)直線的方程為:,代入得,,
∵與只有一個公共點, ∴=,∴,
∴直線的方程為:,∴原點到直線的距離=,
∴坐標(biāo)原點到,距離的比值為3.
解析2由對稱性設(shè),則
點關(guān)于點對稱得:
得:,直線
切點
直線
坐標(biāo)原點到距離的比值為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com