在平面幾何里,有勾股定理:“設(shè)△ABC的兩邊AB、AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積間的關(guān)系,可以得出的正確結(jié)論是:“設(shè)三棱錐A—BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩相互垂直,則”_________________.

答案:S△DBC2=S△DAB2+S△DAC2+S△ABC2

解析:如圖,過(guò)A作BC的垂線AE與BC交于點(diǎn)E,連結(jié)DE,則BC⊥DE.∵S△ABC2=AB2·AC2,S△DAB2=AB2·DA2,S△DAC2=AC2·DA2,S△DBC2=BC2·DE2=BC 2(AE2+DA2)=(AB2+AC2)(AE2+DA2)=AB2·DA2+AC2·AD2+BC2·AE2,

∴S△DBC2=S△DAB2+S△DAC2+S△ABC2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、在平面幾何里,有勾股定理“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2”,拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積間的關(guān)系,可以得出正確的結(jié)論是:“設(shè)三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則
S△ABC2+S△ACD2+S△ADB2=S△BCD2
.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3、在平面幾何里,有勾股定理:“設(shè)△ABC的兩邊AB,AC互相垂直,則|AB|2+|AC|2=|BC|2”拓展到空間,類比平面幾何的勾股定理,“設(shè)三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB 兩兩相互垂直,則可得”( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東汕頭市高二10月月考數(shù)學(xué)試卷(解析版) 題型:填空題

在平面幾何里,有勾股定理:“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的面面積與底面面積間的關(guān)系。可以得出的正確結(jié)論是:“設(shè)三棱錐A—BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩相互垂直,則                                        ”.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省佛山市高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

在平面幾何里,有勾股定理:“設(shè)的兩邊AB、AC互相垂直,則!蓖卣沟娇臻g,類比平面幾何的勾股定理,研究三棱錐的側(cè)面積與底面積間的關(guān)系,可以得到的正確結(jié)論是:“設(shè)三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則                     

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省濟(jì)寧市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

在平面幾何里,有勾股定理:“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2”拓展到空間,類比平面幾何的勾股定理,“設(shè)三棱錐ABCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩相互垂直,則可得”猜想正確的是(    )

A.AB2+AC2+ AD2=BC2 +CD2 +BD2              B.

C.          D.AB2×AC2×AD2=BC2 ×CD2 ×BD2

 

查看答案和解析>>

同步練習(xí)冊(cè)答案