(文)設(shè)f(x)是定義在(-π,0)∪(0,π)上的奇函數(shù),其導(dǎo)函數(shù)為f'(x).當(dāng)0<x<π時(shí),
f'(x)•cosx-sinx•f(x)>0,則不等式f(x)•cosx>0的解集為
 
分析:根據(jù)[f(x)cosx]′=f'(x)•cosx-sinx•f(x),據(jù)已知條件及導(dǎo)函數(shù)符號(hào)與函數(shù)單調(diào)性的關(guān)系判斷出f(x)cosx的單調(diào)性,容易得到函數(shù)f(x)cosx的兩個(gè)零點(diǎn),根據(jù)函數(shù)的單調(diào)性求出不等式的解集.
解答:解:設(shè)g(x)=f(x)cosx,
∵f(x)是定義在(-π,0)U(0,π)上的奇函數(shù),
故g(-x)=f(-x)cos(-x)=-f(x)cosx=-g(x),
∴g(x)是定義在(-π,0)U(0,π)上的奇函數(shù).
g'(x)=f'(x)cosx-sinxf(x)>0,
∴g(x)在(0<x<π)遞增,
于是奇函數(shù)g(x)在(-π,0)遞增.
g(±
π
2
)=0

∴f(x)•cosx>0的解集為
(-
π
2
,0)∪(
π
2
,π)

故答案為:(-
π
2
,0)∪(
π
2
,π)
點(diǎn)評(píng):求抽象不等式的解集,一般能夠利用已知條件判斷出函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性將抽象不等式轉(zhuǎn)化為具體函的不等式解之.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓的方程為(a>0),其右焦點(diǎn)為F,把橢圓的長軸分成6等份,過每個(gè)分點(diǎn)作x軸的垂線交橢圓上半部于點(diǎn)P1、P2、P3、P4、P5五個(gè)點(diǎn),且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=.

(1)求橢圓的方程;

(2)設(shè)直線l過F點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.

(文)某廠家擬在2006年舉行促銷活動(dòng),經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬件與年促銷費(fèi)用m萬元(m≥0)滿足x=3(k為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬件.已知2006年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費(fèi)用).

(1)將2006年該產(chǎn)品的利潤y萬元表示為年促銷費(fèi)用m萬元的函數(shù);

(2)該廠家2006年的促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大?

查看答案和解析>>

同步練習(xí)冊答案