【題目】已知橢圓

(1)若橢圓的離心率為,求的值;

(2)若過點任作一條直線與橢圓交于不同的兩點,在軸上是否存在點,使得, 若存在,求出點的坐標;若不存在,請說明理由.

【答案】(Ⅰ);(Ⅱ).

【解析】

試題()橢圓的離心率 求解;()若滿足,則直線的斜率之和 ,那么設(shè)直線方程與橢圓方程聯(lián)立,得到根與系數(shù)的關(guān)系,代入 ,利用和恒為0的條件,求得定點.

試題解析: (Ⅰ)因為,,所以.又,得.

(Ⅱ)若存在點,使得,則直線的斜率存在,分別設(shè)為,且滿足.依題意,直線的斜率存在,故設(shè)直線的方程為.由,得.因為直線與橢圓有兩個交點,所以.即,解得.設(shè),則,,.令,,當時,,所以,化簡得,,所以.當時,檢驗也成立.所以存在點,使得.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象的相鄰兩條對稱軸之間的距離為.

(1)討論函數(shù)f(x)在區(qū)間上的單調(diào)性;

(2)將函數(shù)的圖象向左平移個單位,再將所得圖象上各點的橫坐標縮短為原來的,縱坐標不變,得到函數(shù)的圖象.求上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體(如圖),則(

A.直線CFGD所成的角與向量所成的角相等

B.向量是平面ACH的法向量

C.直線CE與平面ACH所成角的正弦值與的平方和等于1

D.二面角的余弦值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中錯誤的是( )

A. 命題“若,則”的逆否命題是真命題

B. 命題“”的否定是“

C. 為真命題,則為真命題

D. 已知,則“”是“”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某多面體的三視圖如圖所示,其中俯視圖是等腰三角形,該多面體的各個面中有若干個是等腰三角形,這些等腰三角形的面積之和為______________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解甲、乙兩班的數(shù)學(xué)學(xué)習情況,從兩班各抽出10名學(xué)生進行數(shù)學(xué)水平測試,成績?nèi)缦?單位:分):

甲班:82 84 85 89 79 80 91 89 79 74

乙班:90 76 86 81 84 87 86 82 85 83

(1)求兩個樣本的平均數(shù);

(2)求兩個樣本的方差和標準差;

(3)試分析比較兩個班的學(xué)習情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,是橢圓上一動點(與左、右頂點不重合).已知的面積的最大值為,橢圓的離心率為.

1)求橢圓的方程;

2)過的直線交橢圓、兩點,過軸的垂線交橢圓與另一點不與重合).設(shè)的外心為,求證為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人抽到喜歡游泳的學(xué)生的概率為

(1)請將上述列聯(lián)表補充完整;

(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關(guān)?并說明你的理由;

(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機抽取2人,求恰好有1人喜歡游泳的概率.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件

B. p:,,則

C. “若,則”的否命題是“若,則

D. 為假命題,則p,q均為假命題

查看答案和解析>>

同步練習冊答案