已知橢圓數(shù)學(xué)公式,A,F(xiàn)是其左頂點(diǎn)和左焦點(diǎn),P是圓x2+y2=b2上的動(dòng)點(diǎn),若數(shù)學(xué)公式,則此橢圓的離心率是________.


分析:設(shè)F(c,0),由c2=a2-b2可求c,P(x1,y1),要使得是常數(shù),則有(x1+a)2+y12=λ[(x1+c)2+y12]比較兩邊可得c,a的關(guān)系,結(jié)合橢圓的離心率的范圍可求
解答:設(shè)F(c,0),c2=a2-b2,A(-a,0),F(xiàn)(-c,0),P(x1,y1),使得是常數(shù),
則有(x1+a)2+y12=λ[(c+x12+y12](x,λ是常數(shù))
即b2+2ax1+a2=λ(b2+2cx1+c2),
比較兩邊,b2+a2=λ(b2+c2),a=λc,
故cb2+ca2=a(b2+c2),即ca2-c3+ca2=a3
即e3-2e+1=0,
∴(e-1)(e2+e-1)=0,
∴e=1或e=
∵0<e<1,∴e=
故答案為:
點(diǎn)評(píng):本題考查橢圓的離心率,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點(diǎn)O、半徑是
a2+b2
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(
2
,0)
,其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為
3

(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1,l2是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,A,F(xiàn)是其左頂點(diǎn)和左焦點(diǎn),P是圓x2+y2=b2上的動(dòng)點(diǎn),若
|PA|
|PF|
=常數(shù)
,則此橢圓的離心率是
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓D:x2+
y2
b2
=1(0<b<1)
的左焦點(diǎn)為F,其左右頂點(diǎn)為A、C,橢圓與y軸正半軸的交點(diǎn)為B,△FBC的外接圓的圓心P(m,n)在直線x+y=0上.
(Ⅰ)求橢圓D的方程;
(Ⅱ)已知直線l:x=-
2
,N是橢圓D上的動(dòng)點(diǎn),NM⊥l,垂足為M,是否存在點(diǎn)N,使得△FMN為等腰三角形?若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓=1(a>b>0),其右準(zhǔn)線l與x軸交于點(diǎn)A,橢圓的上頂點(diǎn)為B,過(guò)它的右焦點(diǎn)F且垂直于長(zhǎng)軸的直線交橢圓于點(diǎn)P,直線AB恰經(jīng)過(guò)線段FP的中點(diǎn)D.

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)分別是A1、A2,且=-3,求橢圓方程;

(Ⅲ)在(Ⅱ)的條件下,設(shè)Q是橢圓右準(zhǔn)線l上異于A的任意一點(diǎn),直線QA1、QA2與橢圓的另一個(gè)交點(diǎn)分別為M、N,求證:直線MN與x軸交于定點(diǎn).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案