【題目】在△ABC中,角A.B.C所對的邊分別為a.b.c且,,,若,則的取值范圍是______

【答案】,

【解析】

由題意可得C=﹣B,且B∈(,),又cosB+sinC=sin(B+),由B的范圍逐步可得最終的范圍.

∵2b>2a∴b>a,b>c,

即邊b為最大邊,B

又b2+c2=a2+bc,所以cosA==,故A=

由三角形的內(nèi)角和可得B+C==,即C=﹣B,

,可知B為銳角,故B∈(,

所以cosB+sinC=cosB+sin(﹣B)=cosB+cosB+sinB

=cosB+sinB=cosB+sinB)=sin(B+),

∵B∈(),∴B+∈(,),

故sin(B+)∈(),

所以sin(B+)∈(

故答案為:(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息解答以下問題:

(1)本次一共調(diào)查了多少名學(xué)生.(2)在圖(1)中將對應(yīng)的部分補(bǔ)充完整.

(3)若該校有3 000名學(xué)生,你估計全校有多少名學(xué)生平均每天參加體育活動的時間在0.5時以下?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù),其中a為常數(shù).

I)若x=1是函數(shù)的一個極值點(diǎn),求a的值

II)若函數(shù)在區(qū)間(-1,0)上是增函數(shù),求a的取值范圍

III)若函數(shù),在x=0處取得最大值,求正數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:

(1)如果不超過200元,則不給予優(yōu)惠;

(2)如果超過200元但不超過500元,則按標(biāo)價給予9折優(yōu)惠;

(3)如果超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.

某人單獨(dú)購買A,B商品分別付款168元和423元,假設(shè)他一次性購買A,B兩件商品,則應(yīng)付款是

A. 413.7B. 513.7C. 546.6D. 548.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分分)

已知圓,過點(diǎn)作直線交圓、兩點(diǎn).

)當(dāng)經(jīng)過圓心時,求直線的方程.

)當(dāng)直線的傾斜角為時,求弦的長.

)求直線被圓截得的弦長時,求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運(yùn)輸隊接到給災(zāi)區(qū)運(yùn)送物資的任務(wù),該運(yùn)輸隊有8輛載重為型卡車,6輛載重為型卡車,10名駕駛員,要求此運(yùn)輸隊每天至少運(yùn)送救災(zāi)物資.已知每輛卡車每天往返的次數(shù)為型卡車16次, 型卡車12次.每輛卡車每天往返的成本為型卡車240元, 型卡車378元.問每天派出型卡車與型卡車各多少輛,運(yùn)輸隊所花的成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分分)

已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.

(Ⅰ)求圓的方程.

)設(shè)直線與圓相交于, 兩點(diǎn),求實數(shù)的取值范圍.

)在()的條件下,是否存在實數(shù),使得點(diǎn), 兩點(diǎn)的距離相等,若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列滿足, ,

1的通項公式;

2求和:

【答案】1;(2

【解析】試題分析:(1)根據(jù)等差數(shù)列, ,列出關(guān)于首項、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.

試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)設(shè)等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

從而.

型】解答
結(jié)束】
18

【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

(I)求直方圖中的a值;

(II)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由。

查看答案和解析>>

同步練習(xí)冊答案