定義在R上的偶函數(shù)f(x)在(-∞,0]上是減函數(shù),若f(a-1)>f(2-a),則a的取值范圍是
 
分析:由已知中f(x)是定義在R上的偶函數(shù),且f(x)在(-∞,0]上是減函數(shù),根據(jù)偶函數(shù)單調(diào)性的性質(zhì),我們可以判斷出函數(shù)在[0,+∞)上的單調(diào)性,畫出函數(shù)的簡圖后,構(gòu)造不等式,解不等式即可求出a的取值范圍.
解答:精英家教網(wǎng)解:∵f(x)是定義在R上的偶函數(shù),
且f(x)在(-∞,0]上是減函數(shù)
故f(x)在[0,+∞)上是增函數(shù)
其簡圖如下圖所示:
由圖可知:若f(a-1)>f(2-a),
則(a-1)2>(2-a)2,
解得a>
3
2

故答案為:(
3
2
,+∞)
點評:本題考查的知識是函數(shù)的單調(diào)性和函數(shù)的奇偶性,這兩個函數(shù)綜合應(yīng)用時,要注意:奇函數(shù)在對稱區(qū)間上單調(diào)性相同,偶函數(shù)在對稱區(qū)間上單調(diào)性相反.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)是最小正周期為π的周期函數(shù),且當x∈[0,
π
2
]
時,f(x)=sinx,則f(
3
)
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7、定義在R上的偶函數(shù)f(x),當x≥0時有f(2+x)=f(x),且x∈[0,2)時,f(x)=2x-1,則f(2010)+f(-2011)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x),滿足f(x+2)=f(x),且f(x)在[-3,-2]上是減函數(shù),若α、β是銳角三角形中兩個不相等的銳角,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個命題:
①f(x)是周期函數(shù);
②f(x)的圖象關(guān)于x=l對稱;
③f(x)在[l,2l上是減函數(shù);
④f(2)=f(0),
其中正確命題的序號是
①②④
①②④
.(請把正確命題的序號全部寫出來)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知定義在R上的偶函數(shù)f(x).當x≥0時,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函數(shù)f(x)的解析式并畫出函數(shù)的圖象;
(Ⅱ)寫出函數(shù)f(x)的值域.

查看答案和解析>>

同步練習冊答案