(1)已知a2x3x+1>ax+2x1(a>0且a≠1)求x的取值范圍。

(2)求函數(shù)y=的定義域以及單調(diào)遞增區(qū)間。

(1)見解析(2)函數(shù)的定義域?yàn)閇-,-1)∪(1,],單調(diào)遞增區(qū)間

是[-,-1)


解析:

(1)當(dāng)a>1時(shí),不等式的解集為

當(dāng)0<a<1時(shí),不等式的解集為

(2)由log(x2-1)≥0得,原函數(shù)的定義域?yàn)閇-,-1)∪(1,],單調(diào)遞增區(qū)間

是[-,-1)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:(1)已知a>0,a2x=3,求
a3x+a-3x
ax+a-x
的值;
(2)求
lg8+lg125-lg2-lg5
lg
10
•lg0.1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知實(shí)數(shù)集A={x|a1x=b1,a1b1≠0},B={x|a2x=b2,a2b2≠0},證明:A=B的充要條件是
a1
a2
=
b1
b2
;
(2)已知實(shí)數(shù)集A={x|a1x2+b1x+c1=0,a1b1c1≠0},B=x|a2x2+b2x+c2=0,a2b2c2≠0},問
a1
a2
=
b1
b2
=
c1
c2
是A=B的什么條件?請(qǐng)給出說明過程;
(3)已知實(shí)數(shù)集A={x|a1x2+b1x+c1>0,a1b1c1≠0},B=x|a2x2+b2x+c2>0,a2b2c2≠0},,問
a1
a2
=
b1
b2
=
c1
c2
是A=B的什么條件?請(qǐng)給出說明過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)一模)我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),試將m表示成x進(jìn)制的簡記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求證:bn=
2
7
8n-
2
7

(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)模擬)我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在實(shí)常數(shù)p和q,對(duì)于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知(a+a-12=3,求a3+a-3;
(2)已知a2x=
2
+1,求
a3x+a-3x
ax+a-x
;
(3)已知x-3+1=a,求a2-2ax-3+x-6的值.

查看答案和解析>>

同步練習(xí)冊答案