【題目】某中學高三年級從甲、乙兩個班級各選出7名學生參加數(shù)學競賽,他們取得的成績(滿分100分)的莖葉圖如圖,其中甲班學生的平均分是85,乙班學生成績的中位數(shù)是83,則x+y的值為

【答案】8
【解析】解:由莖葉圖可得甲班7名學生的成績?yōu)椋?9,78,80,80+x,85,92,96;
乙班7名學生的成績?yōu)椋?6,81,81,80+y,91,91,96;
,得:x=5,
因為乙班共有7名學生,所以中位數(shù)應是80+y=83,所以y=3,
所以x+y=8,
所以答案是8.
【考點精析】本題主要考查了莖葉圖的相關知識點,需要掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為圓上任一點,且點

1)若在圓上,求線段的長及直線的斜率.

2)求的最大值和最小值.

3)若,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過直角坐標平面xOy中的拋物線y2=2px(p>0)的焦點F作一條傾斜角為的直線與拋物線相交于AB兩點.

(1)用p表示線段AB的長;

(2)若,求這個拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某景區(qū)修建一棟復古建筑,其窗戶設計如圖所示.圓的圓心與矩形對角線的交點重合,且圓與矩形上下兩邊相切(為上切點),與左右兩邊相交(,為其中兩個交點),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1,且,設,透光區(qū)域的面積為.

(1)求關于的函數(shù)關系式,并求出定義域;

(2)根據(jù)設計要求,透光區(qū)域與矩形窗面的面積比值越大越好.當該比值最大時,求邊的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經(jīng)過點A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)若 =﹣2,求實數(shù)k的值;
(3)過點(0,4)作動直線m交圓C于E,F(xiàn)兩點.試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列滿足

(1)設,求數(shù)列的通項公式;

(2)設,求數(shù)列的前n項和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在正方體中, 是棱的中點.

)求直線和平面所成角的正弦值.

)在棱上是否存在一點,使平面?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在坐標原點、焦點在x軸上的橢圓,它的離心率為,且與直線xy10相交于M、N兩點,若以MN為直徑的圓經(jīng)過坐標原點,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌電視生產(chǎn)廠家有A,B兩種型號的電視機參加了家電下鄉(xiāng)活動,若廠家對AB兩種型號的電視機的投放金額分別為p,q萬元,農民購買電視機獲得的補貼分別為p, ln q萬元,已知A,B兩種型號的電視機的投放總額為10萬元,且A,B兩種型號的電視機的投放金額均不低于1萬元,請你制定一個投放方案,使得在這次活動中農民得到的補貼最多,并求出最大值.(精確到0.1,參考數(shù)據(jù):ln 41.4)

查看答案和解析>>

同步練習冊答案