14.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是( 。ヽm2( 。
A.80B.76C.72D.68

分析 由三視圖知,幾何體是兩個(gè)相同長(zhǎng)方體的組合,長(zhǎng)方體的長(zhǎng)寬高分別為4,2,2,兩個(gè)長(zhǎng)方體的重疊部分是一個(gè)邊長(zhǎng)為2 的正方形,由此能求出該幾何體的表面積.

解答 解:由三視圖知,幾何體是兩個(gè)相同長(zhǎng)方體的組合,
長(zhǎng)方體的長(zhǎng)寬高分別為4,2,2,
兩個(gè)長(zhǎng)方體的重疊部分是一個(gè)邊長(zhǎng)為2 的正方形,如圖,
該幾何體的表面積為:
S=2(2×2×2+2×4×4)-2(2×2)=72.
故選:C.

點(diǎn)評(píng) 本題考查幾何體的表面積的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意三視圖性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.sin20°sin50°-cos160°sin40°的值為( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是C1D的中點(diǎn),P是棱CC1所在直線(xiàn)上的動(dòng)點(diǎn).則下列三個(gè)命題:
(1)CD⊥PE           
(2)EF∥平面ABC1
(3)V${\;}_{P-{A}_{1}D{D}_{1}}$=V${\;}_{{D}_{1}-ADE}$
其中正確命題的個(gè)數(shù)有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知p:x≤-1,q:a≤x<a+2,若q是p的充分不必要條件,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,1]B.[3,+∞)C.(-∞,-3]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a22=37,S22=352.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{{a}_{n+3}•{a}_{n+4}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在平面平直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,在頂點(diǎn)為A(-2,0),過(guò)點(diǎn)A作斜率為k(k≠0)的直線(xiàn)l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.
(1)求橢圓C的方程;
(2)已知點(diǎn)P為AD的中點(diǎn),是否存在定點(diǎn)Q,對(duì)于任意的k(k≠0)都有OP⊥EQ?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說(shuō)明理由;
(3)若過(guò)點(diǎn)O作直線(xiàn)l的平行線(xiàn)交橢圓C于點(diǎn)M,求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且a≠b,則$\frac{sinC(bcosA-acosB)}{asinA-bsinB}$=( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.角α的頂點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,“角α的終邊在射線(xiàn)x+3y=0(x≥0)上”是“sin2α=-$\frac{3}{5}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(理)如圖,棱柱ABCD-A1B1C1D1的所有棱長(zhǎng)都等于2,∠ABC=∠A1AC=60°,平面AA1CC1⊥平面ABCD.
(1)證明:BD⊥AA1
(2)求二面角D-AA1-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案