已知橢圓,過橢圓右焦點(diǎn)F的直線L交橢圓于A、B兩點(diǎn),交y軸于P點(diǎn)。設(shè),則等于( )
A. B. C. D.
B
【解析】
試題分析:設(shè)出直線方程,代入橢圓方程,利用韋達(dá)定理,結(jié)合向量條件,即可得到結(jié)論.
由題意a=5,b=3,c=4,所以F點(diǎn)坐標(biāo)為(4,0)
設(shè)直線l方程為:y=k(x-4),A點(diǎn)坐標(biāo)為(x1,y1),B點(diǎn)坐標(biāo)為(x2,y2),得P點(diǎn)坐標(biāo)(0,-4k),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013042115371108659962/SYS201304211538138209679470_DA.files/image001.png">,所以(x1,y1+4k)=λ1(4-x1,-y1)
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013042115371108659962/SYS201304211538138209679470_DA.files/image002.png">,所以(x2,y2+4k)=λ2(4-x2,-y2).
得到,直線方程代入橢圓中,得到
故選B
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評(píng):本題考查直線與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com