設(shè)函數(shù)f (x)=ax2+(b-1)x+3a是定義在[a-3,2a]上的偶函數(shù),則a+b的值是 .
【答案】分析:由函數(shù)f (x)=ax2+(b-1)x+3a是定義在[a-3,2a]上的偶函數(shù)可得定義域關(guān)于原點(diǎn)對稱,則有a-3+2a=0可求a,然后由f(-x)=f(x)對任意的x∈[a-3,,2a]都成立,代入可求b
解答:解:∵函數(shù)f (x)=ax2+(b-1)x+3a是定義在[a-3,2a]上的偶函數(shù)
根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對稱可知a-3+2a=0
∴a=1,故f(x)=x2+(b-1)x+3
∴f(-x)=f(x)對任意的x∈[-2,2]都成立
即(-x)2-(b-1)x+3=x2+(b-1)x+3
(b-1)x=0對任意的x∈[-2,2]都成立
∴b=1
∴a+b=2
故答案為2
點(diǎn)評:本題主要考查了由偶函數(shù)的定義求解函數(shù)中參數(shù)的取值,解題的關(guān)鍵是靈活利用偶函數(shù)的定義中的定義域關(guān)于原點(diǎn)對稱的條件