【題目】下列命題中,正確命題的序號(hào)是____________

①數(shù)列{an}的前n項(xiàng)和,則數(shù)列{ an }是等差數(shù)列。

②若等差數(shù)列{ an }中,已知 ,則

③函數(shù)的最小值為2。

④等差數(shù)列的前n項(xiàng)和為,,最大時(shí)13

⑤若數(shù)列{an}是等比數(shù)列,其前n項(xiàng)和為則常數(shù)k的值為1.

【答案】①②④.

【解析】分析:①根據(jù)和項(xiàng)與通項(xiàng)關(guān)系求通項(xiàng),再根據(jù)等差數(shù)列定義進(jìn)行判斷,②根據(jù)等差數(shù)列基本量的計(jì)算求;③根據(jù)函數(shù)單調(diào)性求最小值,④根據(jù)等差數(shù)列性質(zhì)確定項(xiàng)的符號(hào)變化的情況,根據(jù)所有正項(xiàng)的和最大確定結(jié)果. ⑤根據(jù)等比數(shù)列和項(xiàng)特點(diǎn)得常數(shù)k的值.

詳解:因?yàn)?/span>,所以,數(shù)列{}是等差數(shù)列; ①正確;

因?yàn)?/span> ,所以,②正確;

因?yàn)?/span>,t=,所以上單調(diào)遞增,當(dāng)時(shí)取最小值為,③錯(cuò);

因?yàn)?/span>,,所以

,因此最大時(shí)13,④對(duì).

若數(shù)列{an}是等比數(shù)列,其前n項(xiàng)和為,因?yàn)?/span>,所以k=3, ⑤錯(cuò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)向量 ,
(1)若 ,求x的值;
(2)設(shè)函數(shù) ,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)高考之后計(jì)劃去三個(gè)不同社區(qū)進(jìn)行幫扶活動(dòng),每人只能去一個(gè)社區(qū),每個(gè)社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為 ( )

A. 24 B. 8 C. 7 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且.

(1)證明是等比數(shù)列,并求的通項(xiàng)公式;

(2)求;

(3)設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的直角坐標(biāo)方程;

2)若有且僅有三個(gè)公共點(diǎn),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義在R上的偶函數(shù)滿足,且時(shí), ,則函數(shù)的零點(diǎn)個(gè)數(shù)是( )

A. 6個(gè)B. 8個(gè)C. 2個(gè)D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年推出一種新型家用轎車,購(gòu)買時(shí)費(fèi)用為16.9萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共1.2萬(wàn)元,汽車的維修費(fèi)為:第一年無(wú)維修費(fèi)用,第二年為0.2萬(wàn)元,從第三年起,每年的維修費(fèi)均比上一年增加0.2萬(wàn)元.

(I)設(shè)該輛轎車使用n年的總費(fèi)用(包括購(gòu)買費(fèi)用、保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式;

(II)這種汽車使用多少報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)設(shè)函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sinx的圖象向右平移 個(gè)單位后得到函數(shù)y=g(x)的圖象,則函數(shù)y=f(x)+g(x)的最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案