【題目】如圖,矩形所在的平面與直角梯形所在的平面成的二面角,,,.

1)求證:;

2)在線段上求一點(diǎn),使銳二面角的余弦值為.

【答案】1)見解析;(2為線段的中點(diǎn).

【解析】

1)利用面面平行的判定定理證明出平面平面,再利用平面與平面平行的性質(zhì)得出平面

2)由,,由二面角的定義得出,證明出平面平面,過點(diǎn)在平面內(nèi)作,可證明出平面,以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為軸、軸建立空間直角坐標(biāo)系,設(shè)點(diǎn)的坐標(biāo)為,利用向量法結(jié)合條件銳二面角的余弦值為求出的值,由此確定點(diǎn)的位置.

1)在矩形中,,又平面,平面,

平面,同理可證平面

,、平面平面平面,

平面,平面;

2)在矩形中,,又,則矩形所在平面與直角梯形所在平面所成二面角的平面角為,即.

平面,

,平面,,

,、平面,平面.

,,,,

,,.

為原點(diǎn),所在直線分別為軸、軸如圖建立空間直角坐標(biāo)系

、,設(shè).

,,

設(shè)平面的一個(gè)法向量為,則,即,取,則,,則平面的一個(gè)法向量為.

.又平面的一個(gè)法向量為,

解得(舍去).

此時(shí),, 即所求點(diǎn)為線段的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙二人去看望高中數(shù)學(xué)張老師,期間他們做了一個(gè)游戲,張老師的生日是日,張老師把告訴了甲,把告訴了乙,然后張老師列出來如下10個(gè)日期供選擇: 2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲說“我不知道,但你一定也不知道”,乙聽了甲的話后,說“本來我不知道,但現(xiàn)在我知道了”,甲接著說,“哦,現(xiàn)在我也知道了”.請(qǐng)問張老師的生日是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若存在實(shí)數(shù),使得,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某養(yǎng)殖產(chǎn)品在某段時(shí)間內(nèi)的生長情況,在該批產(chǎn)品中隨機(jī)抽取了120件樣本,測(cè)量其增長長度(單位:),經(jīng)統(tǒng)計(jì)其增長長度均在區(qū)間內(nèi),將其按,,,分成6組,制成頻率分布直方圖,如圖所示其中增長長度為及以上的產(chǎn)品為優(yōu)質(zhì)產(chǎn)品.

1)求圖中的值;

2)已知這120件產(chǎn)品來自于,B兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:

將聯(lián)表補(bǔ)充完整,并判斷是否有99.99%的把握認(rèn)為優(yōu)質(zhì)產(chǎn)品與A,B兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說明理由;

下面的臨界值表僅供參考:

(參考公式:,其中

3)以樣本的頻率代表產(chǎn)品的概率,從這批產(chǎn)品中隨機(jī)抽取4件進(jìn)行分析研究,計(jì)算抽取的這4件產(chǎn)品中含優(yōu)質(zhì)產(chǎn)品的件數(shù)的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了人,他們?cè)率杖氲念l數(shù)分布及對(duì)“樓市限購令”贊成人數(shù)如下表.

月收入(單位百元)

頻數(shù)

贊成人數(shù)

1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認(rèn)為“月收入以元為分界點(diǎn)對(duì)“樓市限購令”的態(tài)度有差異;

月收入不低于百元的人數(shù)

月收入低于百元的人數(shù)

合計(jì)

贊成

______________

______________

______________

不贊成

______________

______________

______________

合計(jì)

______________

______________

______________

2)若對(duì)在、的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的人中不贊成“樓市限購令”的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

參考公式:,其中.

參考值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離,傾斜角為的直線經(jīng)過焦點(diǎn),且與拋物線交于兩點(diǎn).

1)求拋物線的標(biāo)準(zhǔn)方程及準(zhǔn)線方程;

2)若為銳角,作線段的中垂線軸于點(diǎn).證明:為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)上的單調(diào)遞增區(qū)間;

2)將函數(shù)的圖象向左平移個(gè)單位長度,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象.求證:存在無窮多個(gè)互不相同的整數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x(lnxax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時(shí),(萬元);當(dāng)年產(chǎn)量不小于80千件時(shí),(萬元),每件售價(jià)為0.05萬元,通過市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案