精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,若正四棱柱ABCD-A1B1C1D1的底面邊長為2,高為4,則異面直線BD1與AD所成角的大小是
 
(結果用反三角函數值表示).
分析:先通過平移將兩條異面直線平移到同一個起點,得到的銳角或直角就是異面直線所成的角,在直角三角形中求出正切值,再用反三角函數值表示出這個角即可.
解答:精英家教網解:先畫出圖形
將AD平移到BC,則∠D1BC為異面直線BD1與AD所成角,
BC=2,D1C=2
5
,tan∠D1BC=
5
,
∴∠D1BC=arctan
5

故答案為arctan
5
點評:本題主要考查了異面直線及其所成的角,以及解三角形的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在正四棱柱ABCD-A1B1C1D1中,AB=BC=
1
2
AA1
,點E在棱CC1上.
(1)若B1E⊥BC1,求證:AC1⊥平面B1D1E.
(2)設
CE
EC1
,問是否存在實數λ,使得平面AD1E⊥平面B1D1E,若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在正四棱柱ABCD-A1B1C1D1中,AB=a,AA1=2a,M、N分別是棱BB1,DD1的中點.
①求異面直線A1M與B1C所成的角的余弦值;
②若正四棱柱ABCD-A1B1C1D1的體積為V,三棱錐N-A1B1C1的體積為V1,求
V1V
的值.
③求平面A1MC1與平面B1NC1所成的二面角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在正四棱柱ABCD-A1B1C1D1中,已知AB=2,AA1=2
2
,M為棱A1A上的點,若A1C⊥平面MB1D1
(Ⅰ)確定點M的位置;
(Ⅱ)求二面角D1-MB1-B的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•奉賢區(qū)二模)如圖,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8.
(1)求異面直線B1C與A1C1所成角的大;(用反三角函數形式表示)
(2)若E是線段DD1上(不包含線段的兩端點)的一個動點,請?zhí)岢鲆粋與三棱錐體積有關的數學問題(注:三棱錐需以點E和已知正四棱柱八個頂點中的三個為頂點構成);并解答所提出的問題.

查看答案和解析>>

科目:高中數學 來源:2007-2008學年山東省淄博七中高三(上)第二次月考數學試卷(理科)(解析版) 題型:解答題

如圖,在正四棱柱ABCD-A1B1C1D1中,已知AB=2,AA1=,M為棱A1A上的點,若A1C⊥平面MB1D1
(Ⅰ)確定點M的位置;
(Ⅱ)求二面角D1-MB1-B的大。

查看答案和解析>>

同步練習冊答案