【題目】已知三棱柱的底面
是等邊三角形,側(cè)面
底面
,
是棱
的中點.
(1)求證:平面平面
;
(2)求平面將該三棱柱分成上下兩部分的體積比.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線過點
且與橢圓
相交于
兩點.過點
作直線
的垂線,垂足為
.證明直線
過
軸上的定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行六面體中,底面
為菱形,
和
相交于點
為
的中點
(1)求證:平面
;
(2)若在平面
上的射影為
的中點
.求平面
與平而
所成銳二面角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時代的偉大科學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實踐的基礎(chǔ)上提出祖暅原理:“冪勢既同,則積不容異”. 其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,被平行于這兩個平面的任意平面截得的兩個截面面積分別為
,則“
相等”是“
總相等”的
A. 充分而不必要條件B. 必要而不充分條件
C. 充分必要條件D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓
上兩點,過點
且斜率為
的兩條直線與橢圓
的交點分別為
.
(Ⅰ)求橢圓的方程及離心率;
(Ⅱ)若四邊形為平行四邊形,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動點
到定點
的距離與
到定直線
的距離的比為
,動點
的軌跡記為
.
(1)求軌跡的方程;
(2)若點在軌跡
上運動,點
在圓
上運動,且總有
,
求的取值范圍;
(3)過點的動直線
交軌跡
于
兩點,試問:在此坐標(biāo)平面上是否存在一個定點
,使得無論
如何轉(zhuǎn)動,以
為直徑的圓恒過點
?若存在,求出點
的坐標(biāo).若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):
間隔時間x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求
與實際等候人數(shù)y的差,若差值的絕對值都不超過1,則稱所求方程是“恰當(dāng)回歸方程”.
(1)從這6組數(shù)據(jù)中隨機選取4組數(shù)據(jù),求剩下的2組數(shù)據(jù)的間隔時間相鄰的概率;
(2)若選取的是中間4組數(shù)據(jù),求y關(guān)于x的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”.
附:對于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com