【題目】已知函數(shù)f(x)=2x+cosα﹣2﹣x+cosα , x∈R,且 .
(1)若0≤α≤π,求α的值;
(2)當(dāng)m<1時(shí),證明:f(m|cosθ|)+f(1﹣m)>0.
【答案】
(1)解: , ,
由0≤α≤π,
∴
(2)解:證明:∵m<1,若|cosθ|≠1,則 ,
∴ ,m(|cosθ|﹣1)>﹣1,m|cosθ|>m﹣1,
又|cosθ|=1時(shí)左式也成立,∴m|cosθ|>m﹣1
由(1)知, ,在x∈R上為增函數(shù),且為奇函數(shù),
∴f(m|cosθ|)>f(m﹣1)∴f(m|cosθ|)+f(1﹣m)>0
【解析】(1)由f(1),解方程和特殊三角函數(shù)值,即可得到;(2)運(yùn)用余弦函數(shù)的性質(zhì)和參數(shù)分離,結(jié)合函數(shù)的單調(diào)性和奇偶性,即可得證.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性,需要了解單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 是定義在 上的偶函數(shù),對(duì)任意 ,都有 ,且當(dāng) 時(shí), .若 在 上有5個(gè)根 ,則 的值是( )
A.10
B.9
C.8
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax2﹣2(a+1)x+3(a∈R).
(1)若函數(shù)f(x)在 單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)令h(x)= ,若存在 ,使得|h(x1)﹣h(x2)|≥ 成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a(|sinx|+|cosx|)﹣ sin2x﹣1,若f( )= ﹣ .
(1)求a的值,并寫出函數(shù)f(x)的最小正周期(不需證明);
(2)是否存在正整數(shù)k,使得函數(shù)f(x)在區(qū)間[0,kπ]內(nèi)恰有2017個(gè)零點(diǎn)?若存在,求出k的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,給出以下結(jié)論: ①直線A1B與B1C所成的角為60°;
②若M是線段AC1上的動(dòng)點(diǎn),則直線CM與平面BC1D所成角的正弦值的取值范圍是 ;
③若P,Q是線段AC上的動(dòng)點(diǎn),且PQ=1,則四面體B1D1PQ的體積恒為 .
其中,正確結(jié)論的個(gè)數(shù)是( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二某班50名學(xué)生在一次百米測試中,成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績?cè)趨^(qū)間[14,16)內(nèi)規(guī)定為良好,求該班在這次百米測試中成績?yōu)榱己玫娜藬?shù);
(2)請(qǐng)根據(jù)頻率分布直方圖估計(jì)樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2﹣(1+a)x+y2﹣ay+a=0(a∈R). (Ⅰ) 若a=1,求直線y=x被圓C所截得的弦長;
(Ⅱ) 若a>1,如圖,圓C與x軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)).過點(diǎn)M的動(dòng)直線l與圓O:x2+y2=4相交于A,B兩點(diǎn).問:是否存在實(shí)數(shù)a,使得對(duì)任意的直線l均有∠ANM=∠BNM?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx﹣ )( <ω<2),在區(qū)間(0, )上( )
A.既有最大值又有最小值
B.有最大值沒有最小值
C.有最小值沒有最大值
D.既沒有最大值也沒有最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,x∈[2,6].
(1)證明f(x)是減函數(shù);
(2)若函數(shù)g(x)=f(x)+sinα的最大值為0,求α的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com