【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC
(1)證明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.
【答案】
(1)解:如圖,以DA,DC,DD1為x,y,z軸,建立空間直角坐標系,
則A1(2,0,4),B(2,2,0),C(0,2,0),D(0,0,0),E(0,2,1)
, , ,
∵ ,
,
∴ , ,
∴A1C⊥平面BED
(2)解:∵ , ,
設平面A1DE的法向量為 ,
由 及 ,
得﹣2x+2y﹣3z=0,﹣2x﹣4z=0,
取
同理得平面BDE的法向量為 ,
∴cos< >= = =﹣ ,
所以二面角A1﹣DE﹣B的余弦值為 .
【解析】(1)以DA,DC,DD1為x,y,z軸,建立空間直角坐標系,則 , , ,由向量法能證明A1C⊥平面BED.(2)由 , ,得到平面A1DE的法向量 ,同理得平面BDE的法向量為 ,由向量法能求出二面角A1﹣DE﹣B的余弦值.
科目:高中數學 來源: 題型:
【題目】某農場種植黃瓜,根據多年的市場行情得知,從春節(jié)起的300天內,黃瓜市場售價與上市時間的關系用圖1所示的一條折線表示,黃瓜的種植成本與上市時間的關系用圖2所示的拋物線表示.(注:市場售價和種植成本的單位:元/kg,時間單位:天)
(1)寫出圖1表示的市場售價與時間的函數關系式P=f(t);寫出圖2表示的種植成本與時間的函數關系式Q=g(x);
(2)認定市場售價減去種植成本為純收益,問從春節(jié)開始的第幾天上市的黃瓜純收益最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程是 (t為參數).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ2+12ρcosθ+11=0. (Ⅰ)說明C是哪種曲線?并將C的方程化為直角坐標方程;
(Ⅱ)直線l與C交于A,B兩點,|AB|= ,求l的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)(x>0)滿足:f(xy)=f(x)+f(y),當x<1時f(x)>0,且f( )=1;
(1)證明:y=f(x)是(x>0)上的減函數;
(2)解不等式f(x﹣3)>f( )﹣2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=4,點E、F分別為AB和PD的中點.
(1)求證:直線AF∥平面PEC;
(2)求平面PAD與平面PEC所成銳二面角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)= (a∈R)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)若對于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實數m的取值范圍;
(2)設函數g(x)=(x+1)f(x)﹣b(x﹣1)在[1,e]上有且只有一個零點,求實數b取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com