如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.
(1)求該弦橢圓的方程;
(2)求弦AC中點(diǎn)的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.
(1)由橢圓定義及條件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3. 故橢圓方程為=1. (2)由點(diǎn)B(4,yB)在橢圓上,得|F2B|=|yB|=.因?yàn)闄E圓右準(zhǔn)線方程為x=,離心率為,根據(jù)橢圓定義,有|F2A|=(-x1),|F2C|=(-x2), 由|F2A|、|F2B|、|F2C|成等差數(shù)列,得 (-x1)+(-x2)=2×,由此得出:x1+x2=8. 設(shè)弦AC的中點(diǎn)為P(x0,y0),則x0==4. (3)解法一:由A(x1,y1),C(x2,y2)在橢圓上. 得 、伲诘9(x12-x22)+25(y12-y22)=0, 即9×=0(x1≠x2) 將(k≠0)代入上式,得9×4+25y0(-)=0(k≠0) 即k=y0(當(dāng)k=0時(shí)也成立). 由點(diǎn)P(4,y0)在弦AC的垂直平分線上,得y0=4k+m,所以m=y0-4k=y0-y0=-y0. 由點(diǎn)P(4,y0)在線段BB′(B′與B關(guān)于x軸對(duì)稱)的內(nèi)部,得-<y0<,所以-<m<. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.
(1)求該弦橢圓的方程;
(2)求弦AC中點(diǎn)的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件: |F2A|、|F2B|、|F2C|成等差數(shù)列.
(1)求該弦橢圓的方程;
(2)求弦AC中點(diǎn)的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆四川省高二12月月考理科數(shù)學(xué)試卷 題型:解答題
如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.
(1)求該弦橢圓的方程;
(2)求弦AC中點(diǎn)的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省高二上學(xué)期12月月考理科數(shù)學(xué) 題型:解答題
.(本小題滿分12分).
如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.
(1) 求該弦橢圓的方程;
(2)求弦AC中點(diǎn)的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省高二12月月考理科數(shù)學(xué) 題型:解答題
(本小題滿分12分).
如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.
(1)求該弦橢圓的方程;
(2)求弦AC中點(diǎn)的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com