已知橢圓的右焦點(diǎn)F,左、右準(zhǔn)線分別為l1:x=-m-1,l2:x=m+1,且l1、l2分別與直線y=x相交于A、B兩點(diǎn).

(1) 若離心率為,求橢圓的方程;

(2) 當(dāng)<7時(shí),求橢圓離心率的取值范圍.


解:(1) 由已知,得c=m,=m+1,

從而a2=m(m+1),b2=m.

由e=,得b=c,從而m=1.

故a=,b=1,得所求橢圓方程為+y2=1.

(2)易得A(-m-1,-m-1),B(m+1,m+1),

從而=(2m+1,m+1),=(1,m+1),

=2m+1+(m+1)2=m2+4m+2<7,得0<m<1.

由此離心率e=,

故所求的離心率取值范圍為.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


 如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為.不過原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.

(1) 求橢圓C的方程;

(2) 求△ABP面積取最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


求滿足下列條件的拋物線的標(biāo)準(zhǔn)方程,并求對(duì)應(yīng)拋物線的準(zhǔn)線方程.

(1) 過點(diǎn)(-3,2);

(2) 焦點(diǎn)在直線x-2y-4=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 已知橢圓C:=1(a>b>0)的離心率為,F(xiàn)為橢圓的右焦點(diǎn),M、N兩點(diǎn)在橢圓C上,且 (λ>0),定點(diǎn)A(-4,0).

(1) 求證:當(dāng)λ=1時(shí),;

(2) 若當(dāng)λ=1時(shí),有,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知F1、F2是橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn),P為橢圓C上一點(diǎn),且.若△PF1F2的面積為9,則b=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).

(1) 若曲線C是焦點(diǎn)在x軸上的橢圓,求m的取值范圍;

(2) 設(shè)m=4,曲線C與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線C交于不同的兩點(diǎn)M,N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 已知橢圓C:=1(a>b>0)經(jīng)過點(diǎn)M(-2,-1),離心率為.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.

(1) 求橢圓C的方程;

(2) 試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 已知雙曲線=1的右焦點(diǎn)為(3,0),則該雙曲線的離心率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 已知a>b>c,且a+b+c=0,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案