已知p:?x∈R,2x>m(x2+1),q:?x0∈R,+2x0-m-1=0,且p∧q為真,求實數m的取值范圍.
-2≤m<-1.
解析試題分析:2x>m(x2+1) 可化為mx2-2x+m<0.
所以若p:?x∈R, 2x>m(x2+1)為真,
則mx2-2x+m<0對任意的x∈R恒成立.
由此可得m的取值范圍.
若q:?x0∈R,+2x0-m-1=0為真,
則方程x2+2x-m-1=0有實根,由此可得m的取值范圍.
p∧q為真,則p、q 均為真命題,取m的公共部分便得m的取值范圍.
試題解析:2x>m(x2+1) 可化為mx2-2x+m<0.
若p:?x∈R, 2x>m(x2+1)為真,
則mx2-2x+m<0對任意的x∈R恒成立.
當m=0時,不等式可化為-2x<0,顯然不恒成立;
當m≠0時,有m<0,Δ= 4-4m2<0,∴m<-1.
若q:?x0∈R,+2x0-m-1=0為真,
則方程x2+2x-m-1=0有實根,
∴Δ=4+4(m+1)≥0,∴m≥-2.
又p∧q為真,故p、q 均為真命題.
∴m<-1且m≥-2,∴-2≤m<-1.
考點:1、全稱命題與特稱命題;2、邏輯連結詞.
科目:高中數學 來源: 題型:解答題
已知命題p:方程a2x2+ax-2=0在[-1,1]上有解;命題q:只有一個實數x滿足不等式x2+2ax+2a≤0,若命題“p或q”是假命題,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com