考點:數列的求和,數列遞推式
專題:計算題,等差數列與等比數列
分析:(1)由a
n+12=a
n(a
n+4)+4,可得(a
n+1+a
n+2)(a
n+1-a
n-2)=0,再由a
n>0,得a
n+1-a
n=2,從而可知數列{a
n}為等差數列,易求a
n;
(2)該問題即求數列的周期,由b
n+1=-
可推得b
n+3=b
n;
(3)由(2)知當k∈N
*時,b
3k-2=b
1=1,
b3k-1=b2=-,b
3k=b
3=-2,從而有a
3k-2b
3k-2+a
3k-1b
3k-1+a
3kb
3k=[2(3k-2)-1]×1+[2(3k-1)-1]×(-
)+(2×3k-1)×(-2)=-9k-
,據此可得數列{a
nb
n}的前3n項和S
3n=(a
1b
1+a
2b
2+a
3b
3)+(a
4b
4+a
5b
5+a
6b
6)+…+(a
3n-2b
3n-2+a
3n-1b
3n-1+a
3nb
3n),代入數值可求;
解答:
解:(1)由a
n+12=a
n(a
n+4)+4,得a
n+12=
(an+2)2,
∴(a
n+1+a
n+2)(a
n+1-a
n-2)=0,
由a
n>0,得a
n+1-a
n=2,
∴數列{a
n}為等差數列,且公差為2,
∴{a
n}的通項公式為a
n=2n-1.
(2)b
n+2=-
=-
=-
,
bn+3=-=-
=b
n,
∴當k=3時,對一切n∈N
*有b
n+k=b
n;
(3)
b2=-=-,
b3=-=-2,
由(2)知當k∈N
*時,b
3k-2=b
1=1,
b3k-1=b2=-,b
3k=b
3=-2,
∴a
3k-2b
3k-2+a
3k-1b
3k-1+a
3kb
3k=[2(3k-2)-1]×1+[2(3k-1)-1]×(-
)+(2×3k-1)×(-2)=-9k-
,
∴數列{a
nb
n}的前3n項和
S
3n=(a
1b
1+a
2b
2+a
3b
3)+(a
4b
4+a
5b
5+a
6b
6)+…+(a
3n-2b
3n-2+a
3n-1b
3n-1+a
3nb
3n)
=-9(1+2+…+9)-
n=
-n2-6n.
點評:本題考查由數列遞推式求數列通項、數列求和及數列的性質等知識,考查學生運算求解能力.