【題目】如圖的程序語句輸出的結(jié)果S為( )
A.19
B.17
C.15
D.13
【答案】D
【解析】本題所給的是一個循環(huán)結(jié)構(gòu)的框圖,由圖可以看出,此是一個求正整數(shù)前6個數(shù)和的算法框圖,由公式計算出S的值,選出正確答案
由題意,如圖,此循環(huán)程序共運行6次,依次得到S=5,i=3;再循環(huán)得到S=9,i="5;" 得到S=13,i=7;此時終止循環(huán)得到結(jié)論為13,選D.
7,9,11,13,15,即S代表的是正整數(shù)前6個數(shù)的和,
故S=1+2+3+…+6=21,故選D.
【考點精析】本題主要考查了算法的賦值語句和算法的條件語句的相關(guān)知識點,需要掌握①賦值號左邊只能是變量名字,而不能是表達式.如:2=X是錯誤的.②賦值號左右不能對換.如“A=B”“B=A”的含義運行結(jié)果是不同的.③不能利用賦值語句進行代數(shù)式的演算.(如化簡、因式分解、解方程等)④賦值號“=”與數(shù)學(xué)中的等號意義不同;“條件”表示判斷的條件;“語句”表示滿足條件時執(zhí)行的操作內(nèi)容,條件不滿足時,結(jié)束程序;算機在執(zhí)行時首先對IF后的條件進行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其它語句才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知向量 =( ,﹣ ), =(sinx,cosx),x∈(0, ).
(1)若 ⊥ ,求tanx的值;
(2)若 與 的夾角為 ,求x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線y2=4x的焦點為F,過點F的直線與拋物線交于A,B兩點,過AB的中點M作準(zhǔn)線的垂線與拋物線交于點P,若 ,則弦長|AB|等于( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)對任意都有,且函數(shù)的圖象關(guān)于原點對稱,若滿足不等式,則當(dāng)時, 的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1的圓心在坐標(biāo)原點O,且恰好與直線l1:x﹣2y+3 =0相切,點A為圓上一動點,AM⊥x軸于點M,且動點N滿足 ,設(shè)動點N的軌跡為曲線C.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C相交于不同兩點A,B,且滿足 (O為坐標(biāo)原點),求線段AB長度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù))
(1)若,當(dāng)時,試比較與2的大;
(2)若函數(shù)有兩個極值點,求的取值范圍,并證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}中,a1=1,且a1 , a3 , a9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= +n,求數(shù)列Sn的前Sn項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論的單調(diào)性;
(2)當(dāng)時,若方程有兩個相異實根,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, .
(1)求函數(shù)的增區(qū)間;
(2)若函數(shù)有兩個零點,求實數(shù)的取值范圍,并說明理由;
(3)設(shè)正實數(shù), 滿足,當(dāng)時,求證:對任意的兩個正實數(shù), 總有.
(參考求導(dǎo)公式: )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com